Имеются пятизначные слагаемые. Если в каждом пятизначном числе убрать по две цифры, мы получим сумму трёх трёхзначных чисел. Чтобы сумма полученных трёхзначных чисел была наибольшая, необходимо, чтобы каждое число было наибольшим из возможных. А для этого нужно, чтобы число сотен, десятков и единиц в каждом числе было наибольшим.
Так, в первом числа 95571 убираем цифры 5 и 1, получаем 957. Это наибольшее из всех трёхзначных чисел, которое можно получить из данного пятизначного числа.
Подобным образом из числа 49134 убираем первую цифру 4 и цифру 1, получаем число 934.
Их числа 23627 убираем первую двойку и цифру 3. Получаем число 627.
Итак, полученная сумма 957+934+627=2518 будет наибольшей из возможных.
ответ: 2518 - наибольшая сумма
ну начнем с того, что не рОзделение, а рАзделение, про поЛБеды молчу...
да и ,наверное, речь не о разделении, а о разложении на множители
одночленом могут быть числа, переменные, произведения чисел и переменных, а так же переменные в степени
например
12
2у
-5х²
3х²у³
Многочлен состоит из суммы/ разности одночленов
например
5х³у⁴+3ху²-14z+11
ну а формулы, применимые к числам , так же относятся и к многочленам
а именно
1)Вынесение общего множителя за скобки
ac+bc=c(a+b)ac+bc=c(a+b)
2) Использование формул сокращенного умножения (см фото)
3) квадратный многочлен раскладывается так
ах²+bx+c= a(x-x1)(x-x2)
при D=b²-4ac ≥0
где
x1 x2 - корни квадратного уравнения
4) группировка членов для удобства
х³у
5) метод выделения полного квадрата
пример
x²-2x-3=(x²-2x+1)-4= (x-1)²-2²=
=(x-1-2)(x-1+2)=(х-3)(х+1)
группируя эти методы можно разложить многие многочлены на множители
ну, на самом деле, нужна тренировка и упорство. тут мало объяснить, надо понять
удачи!
Поделитесь своими знаниями, ответьте на вопрос:
Водной и той же системе координат постройте графики функций: а) у = –2х; б) у = –5.