Вот накалякал. Разбирайся :)
xy/(x+y) = 5
xz/(x+z) = 7
yz/(y+z) = 9
xy = 5x + 5y
xz = 7x + 7z
yz = 9y + 9z
x(y-5) = 5y
x = 5y/(y-5)
5yz/(y-5) = 35y/(y-5) + 7z
5yz = 35y + 7z * (y-5)
5yz = 35y + 7yz - 35z
2yz + 35y = 35z
y(2z + 35) = 35z
y = 35z/(2z + 35) = z/(2z/35 + 1)
35z^2/(2z + 35) = 315z/(2z + 35) + 9z
35z^2 = 315z + 9z*(2z + 35)
35z^2 = 315z + 18z^2 + 315z
17z^2 = 630z
z=630/17
y = 35*630/(2*630/17 + 35)/17 = 35*630/(1260 + 595) = 22050/1855 = 630 / 53
x = 5*630/(630/53 - 5)/53 = 5*630/((630/53 - 5)*53) = 5*630/365 = 630/73
√2x-1 < √x-4.
2x-1 < x-4.
x < -4+1.
x < -3.
√2x-1 < x-2.
2x-1 < x²-4x+4.
x²-4x+4-2x+1 > 0.
x²-6x+5 > 0.
(x-1)(x-5) > 0.
x>1, x>5 и x<1, x<5.
Найдём пересечение: (-бесконечность; 1) объединение (5; +бесконечность).
√16-5x 》x-2.
16-5x 》x²-4x+4.
x²-4x+4-16+5x 《 0.
x²+x-12 《 0.
(x+4)(x-3)《 0.
x《 -4, x 》3 и x 》-4, x《 3.
Найдём пересечение: [-4;3].
a√x > 3.
√x > 3/a.
x > (3/a)².
x > 9/a².
2√x+a > x+1.
√x+a > 0,5x+0,5.
x+a > 0,25x²+0,5x+0,25.
0,25x²+0,5x+0,25-x-a > 0.
0,25x²-0,5x+0,25-a > 0.
x²-2x+2-4a > 0.
(x-1)²+1-4a > 0.
Единственное до чего смог дойти, дальше не знаю, извини.
Поделитесь своими знаниями, ответьте на вопрос:
При возведении в степень (b+7)2 получается?