ИльяАндреевич-Мария
?>

Прямая а паралельна плоскости а. сколько прямых, лежащих в плоскости а, параллельны прямой а? параллельны ли друг другу эти прямые, лежащие в плоскости а?

Алгебра

Ответы

ann328389
Прямых, лежащих в плоскости и параллельных прямой а будет множество
все прямые на плоскости будут параллельны прямой
(это все исходит из теорем)
Leonidovich_Elena771
y= \frac{1}{x^2-3x}

1. Область определения функции
x^2-3x\ne0 \\ x_1\ne0 \\ x_2\neq 3 \\ \\ D(y)=(-\infty;0)\cup(0;3)\cup(3;+\infty)

2. Нечетность функции
y(-x)= \frac{1}{(-x)^2-3(-x)} =- \frac{1}{-x^2-3x}
Итак, функция ни четная ни нечетная.

3. Точки пересечения с осью Оу и Ох
3.1. С осью Ох (у=0)
\frac{1}{x^2-3x} =0
Дробь, обращается в 0 тогда, когда числитель равно нулю
1\neq 0
Точки пересечения с осью Ох нет

3.2. С осью Оу (х=0)
y= \frac{1}{0^2-0} - на 0 делить нельзя
Точки пересечения с осью Оу нет

4. Критические точки, возрастание и убывание функции
y'=(\frac{1}{x^2-3x} )'= \frac{1'\cdot (x^2-3x)-1\cdot (x^2-3x)'}{(x^2-3x)^2} =- \frac{2x-3}{(x^2-3x)^2}

y'=0 \\ - \frac{2x-3}{(x^2-3x)^2} =0
Дробь будет 0 тогда, когда числитель равно нулю
2x-3=0 \\ x=1.5

__+__(0)___+__(1.5)___-___(3)__-___
Итак, Функция возрастает на промежутке (-∞;0) и (0;1.5), а убывает на промежутке (1.5;3) и (3;+∞). В точке х=1,5- функция имеет локальный максимум; (1.5;-4/9) - относительный максимум

5. Точки перегиба:
y''=( \frac{-2x+3}{(x^2-3x)^2} )'= \frac{2(3x^2-9x+9)}{(x^2-3x)^3}
y''=0 \\ 3x^2-9x+9=0 \\ D=81-9\cdot 4\cdot 3
D<0, значит уравнение корней не имеет

Возможные точки перегиба: нет.

Вертикальные асимптоты (D(y)): x =0; \,\,\,\, x=3
Наклонных асимптот нет.

Горизонтальные асимптоты: y=0
\lim_{x \to \infty} \frac{1}{x^2-3x} =0

Исследовать функцию и построить график: y=1/(x²-3x).
Тамара_Григорьевна897
1)  Ι5-2хΙ>7
Находим точку, в которой  модуль превращается в ноль:
                                5-2х=0  х=2,5.
 Эта точка разделяет действительную ось на интервалы:
                               (-∞;2,5)∨2,5;+∞).
 Обозначаем знаки модульных функций на найденных интервалах (знаки определяем простой подстановкой точек из интервала:
               х∈(-∞;2,5)   +
               х∈(2,5;+∞)  -.
Раскрываем модуль, учитывая знаки и находим решение:
 5-2х>7    x<-1
-5+2x<7   x>6.
Таким образом, интервалы  (-∞;-1)∨(6;+∞) являются решением этого неравенства.
2)  ΙхΙ+Ιх+3Ι<5
Находим точки, в которых модуль превращается в ноль;
                               х=0   х+3=0  х=-3.
Две точки разделяют действительную ось на интервалы:
                           (-∞;-3)∨(-3;0)∨(0;+∞).
Обозначаем знаки модульных функций на найденных интервалах:
                    (-∞;-3)   -  -
                    (-3;0)    -  +
                    (0;+∞)  +  +.
Раскрываем модули, учитывая знаки и находим решение:
               -x-x-3<5      x>-4
               -x+x+3<5    3<5    x∈(-∞;+∞)
                x+x+3<5    x<1.
Таким образом, интервал (-4;1) является решением этого неравенства.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Прямая а паралельна плоскости а. сколько прямых, лежащих в плоскости а, параллельны прямой а? параллельны ли друг другу эти прямые, лежащие в плоскости а?
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

houseoftorture138
opscosmiclatte7868
mishagoride885
ganzashop
Элизбарян
Раисовна878
westgti77105
grigoriev8
svetlanam81
Lebedeva1577
akakne86
lshimina65
kruttorg
stasyan
Владимирович111