Tsibrova
?>

Відомо що a-b=7, ab=-8знайти значення виразу(а+b)²

Алгебра

Ответы

kazimov832
Підносимо а-б до квадрату
і додаємо 4аб
і виходить 7
soskadoa
Мы знаем, что функция y = sinx принимает положительные значения на промежутке (0; π) и отрицательные на (π; 2π).
Также график функции y = sinx возрастает на [0; π/2], убывает на [π/2; π] 
Мы знаем, что π ≈ 3,14
π/2 ≈ 3,14:2 = 1,57

sin0 = 0
sin4 ≈ sin(π + 0,86) = -sin0,86
0,86 < π/2 ⇒ sin0,86 > 0 ⇒ -sin0,86 < 0

sin(7/3) ≈ sin(2,3) 

Нужно сравнить числа sin(2) и sin(2,3) 

Т.к. на промежутке [π/2; π] синус убывает, то sin(2) > sin(2,3) (оба данных числа заключены в данном промежутке).

Значит, sin4 < 0
sin0 = 0
sin(2) > sin(2,3).

ответ: sin4; sin0; sin(7/3); sin2. 
ii090758
Так как AK - биссектриса, то:
\frac{BK}{AB}= \frac{KC}{AC} \ \ \textless \ =\ \textgreater \ \ \frac{BK}{KC}= \frac{AB}{AC}
при делении точкой отрезка на 2 части, относящиеся как m к n, есть формула для вычисления координат этой точки:
x= \frac{x_1+\lambda*x_2}{1+\lambda} \\y= \frac{y_1+\lambda*y_2}{1+\lambda} \\\lambda= \frac{m}{n}
ищем длины AB и AC:
используем формулу:
|AB|=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}
|AB|=\sqrt{(-2-2)^2+(5-2)^2}=\sqrt{16+9}=5 \\|AC|=\sqrt{(-2-10)^2+5^2}=\sqrt{169}=13
\frac{BK}{KC}= \frac{AB}{AC}= \frac{5}{13} =\lambda
находим координаты точки K:
x_1=2;\ x_2=10;\ y_1=2;\ y_2=0;\ \lambda=\frac{5}{13} \\ \\K( \frac{2+ \frac{5}{13}*10 }{1+\frac{5}{13}} ;\frac{2+ \frac{5}{13}*0 }{1+\frac{5}{13}})=K( \frac{2+ \frac{50}{13} }{ \frac{18}{13}}; \frac{2}{ \frac{18}{13} })=K( \frac{ \frac{76}{13} }{ \frac{18}{13}}; \frac{26}{18} )=K( \frac{76}{18}; \frac{26}{18}) = \\=K( \frac{38}{9}; \frac{13}{9})=K(4 \frac{2}{9};1 \frac{4}{9} )
теперь определим вид треугольника для этого используем теорему косинусов:
для начала найдем длину BC:
|BC|=\sqrt{(2-10)^2+2^2}=\sqrt{68}
вид треугольника будем определять по косинусу самого большого угла; если cos<0, то угол тупой; если cos=0, то угол прямой; если cos>0, то угол острый.
Против большей стороны лежит больший угол, поэтому запишем теорему косинусов для AC и косинуса угла B
AC^2=AB^2+BC^2-2*AB*BC*cosB \\2*AB*BC*cosB=AB^2+BC^2-AC^2 \\cosB= \frac{AB^2+BC^2-AC^2}{2*AB*BC}
подставим значения:
cosB= \frac{AB^2+BC^2-AC^2}{2*AB*BC}= \frac{25+68-169}{2*5*\sqrt{68}}= \frac{-76}{10\sqrt{68}} =- \frac{76}{10\sqrt{68}}
cosB<0 поэтому угол тупой и треугольник тупоугольный
ответ: K(4 \frac{2}{9};1 \frac{4}{9} );\треугольник тупоугольный

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Відомо що a-b=7, ab=-8знайти значення виразу(а+b)²
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

superkiosk249
ibzaira
Ivanova55878
Columbia777
ritckshulga20112
Виталий_Ильназ574
olgolegovnak
Olesya
membuksdk
patersimon1
re-art
os2854
nickcook424
potap-ver20065158
Наталья