Войти
АнонимМатематика21 августа 15:52
Во сколько раз увеличится периметр квадрата и во сколько раз увеличится его площадь, если каждую сторону увеличить в
3 раза?
Соотношение параметров квадрата
Приведём формулы периметра Р и площади S квадрата через длину стороны а.
периметр квадрата Р равен учетверённому размеру его стороны а: Р = 4 * а;
площадь квадрата S равна квадрату его стороны а: S = a²;
периметр и площадь квадрата связаны между собой. так как в их формулах общий параметр - сторона квадрата: S = P² / 16.
Для понятного объяснения задачи увеличим по заданию его сторону в 3 раза.Тогда новая сторона квадрата станет а1 = 3 * а.
Вычисление увеличения периметра и площади квадрата
Чтобы узнать, как при этом изменились периметр и площадь квадрата, подставим в формулы Р и S вместо "а" новое значение стороны "а1". Тогда:
Р1 = 4 * а1 = 4 * (3 * а ) = 12 * а;
S1 = а1² = (3 * а)² = 9 * а².
После того, как выразили новый периметр Р1 и площадь S1 через начальное значение стороны "а", можно ответить на вопрос задания:
для вычислений используем написанные выше формулы для площади S и периметра P;
чтобы узнать, во сколько раз увеличится периметр квадрата, нужно разделить Р1 на Р;
чтобы узнать, во сколько раз увеличится площадь квадрата, нужно разделить S1 на S.
Согласно выше сказанного, ответим на вопросы задания:
во сколько раз увеличился периметр квадрата, для чего разделим (Р1 : Р) = (12 * а) : (4 * а) = 3 (раза);
во сколько раз увеличится площадь квадрата, для чего разделим (S1 : S) = (9 * а²) : (а²) = 9 (раз).
заметим, что если периметр квадрата увеличился в 3 раза, как и сторона квадрата, то площадь, увеличивается в (3)² = 9 раз.
ответ: периметр увеличится в 3 раза, площадь увеличится в 9 раз.
Поделитесь своими знаниями, ответьте на вопрос:
Могут ли события с и d быть такими что р(c)=0.6, р(d)=0.7 и р(с∩d)=0.1
Вероятность совмещения двух событий А1 и А1 равна произведению вероятности одного из них на условную вероятность второго по отношению к первому (аксиома умножения вероятностей):
P(А1∩А2) = P(А1) · Р(А2/А1) = P(А2) · Р(А1/А2).
Значит, события С и D могут быть такими что Р(C)=0.6, Р(D)=0.7 и Р(С∩D)=0,1, если они НЕ независимы
Для независимых событий вероятность их совмещения равна произведению их вероятностей:
P(А1∩А2) = P(А1) · Р(А2)
Значит, события С и D НЕ могут быть такими что Р(C)=0.6, Р(D)=0.7 и Р(С∩D)=0,1, если они независимы.