mira15963256
?>

Решить систему log0, 5х+log0, 5у=-1 х-2у=3

Алгебра

Ответы

leeka152522
I hope this helps you
Решить систему log0,5х+log0,5у=-1 х-2у=3
anton
ОДЗ x > 0, y > 0
\left \{ {{log0,5_x + log0,5_y = -1} \atop {x-2y=3}} \right. =\ \textgreater \ \left \{ {{log0,5_(x*y) = log0,5_2} \atop {x-2y=3}} \right. =\ \textgreater \ \left \{ {{x*y=2} \atop {x-2y=3}} \right.

\left \{ {{(3+2y)*y=2} \atop {x=3+2y}} \right. =\ \textgreater \ \left \{ {{3y+2y^2-2=0} \atop {x=3+2y}} \right. =\ \textgreater \ \left \{ {{2y^2+3y-2=0} \atop {x=3+2y}} \right.

2y^2+3y-2=0
D=25
y1 = -2
y2 = 0,5

x1 = 3 + 2* (-2) = -1
x2 = 3 + 2*(0,5)= 4

(-1;-2) не подходят по одз

ответ: (4;0,5)
Низамов

  4 /   2         2         /atan2(-im(m), -re(m))\       4 /   2         2         /atan2(-im(m), -re(m))\

      \/ 3 *\/   im (m) + re (m) *cos||   i*\/ 3 *\/   im (m) + re (m) *sin||

                                    \           2           /                                   \           2           /

n1 = - -

                                3                                                         3                            

                                                                                 

      4 /   2         2         /atan2(-im(m), -re(m))\       4 /   2         2         /atan2(-im(m), -re(m))\

    \/ 3 *\/   im (m) + re (m) *cos||   i*\/ 3 *\/   im (m) + re (m) *sin||

                                  \           2           /                                   \           2           /

n2 = +

                              3                                                         3                            

                /     /                                   \\               /     /                                   \\

            /                       2                         2     |     |im(m)   \/ 3 *re(m)   re(m)   \/ 3 *im(m)||           /                       2                         2     |     |im(m)   \/ 3 *re(m)   re(m)   \/ 3 *im(m)||

          /   /                 \     /                 \       |atan2| - + ||         /   /                 \     /                 \       |atan2| - + ||

          /   |im(m)   \/ 3 *re(m)|     |re(m)   \/ 3 *im(m)|       |     \   6           6         6           6     /|         /   |im(m)   \/ 3 *re(m)|     |re(m)   \/ 3 *im(m)|       |     \   6           6         6           6     /|

n3 = - 4 /     | - |   + | + |   *cos|| - i*4 /     | - |   + | + |   *sin||

      \/     \   6           6     /     \   6           6     /       \                       2                       /     \/     \   6           6     /     \   6           6     /       \                       2                       /

              /     /                                   \\               /     /                                   \\

          /                       2                         2     |     |im(m)   \/ 3 *re(m)   re(m)   \/ 3 *im(m)||           /                       2                         2     |     |im(m)   \/ 3 *re(m)   re(m)   \/ 3 *im(m)||

        /   /                 \     /                 \       |atan2| - + ||         /   /                 \     /                 \       |atan2| - + ||

        /   |im(m)   \/ 3 *re(m)|     |re(m)   \/ 3 *im(m)|       |     \   6           6         6           6     /|         /   |im(m)   \/ 3 *re(m)|     |re(m)   \/ 3 *im(m)|       |     \   6           6         6           6     /|

n4 = 4 /     | - |   + | + |   *cos|| + i*4 /     | - |   + | + |   *sin||

    \/     \   6           6     /     \   6           6     /       \                       2                       /     \/     \   6           6     /     \   6           6     /       \                       2                       /

                /     /                                   \\               /     /                                   \\

            /                       2                         2     |     |im(m)   \/ 3 *re(m)   re(m)   \/ 3 *im(m)||           /                       2                         2     |     |im(m)   \/ 3 *re(m)   re(m)   \/ 3 *im(m)||

          /   /                 \     /                 \       |atan2| + - ||         /   /                 \     /                 \       |atan2| + - ||

          /   |im(m)   \/ 3 *re(m)|     |re(m)   \/ 3 *im(m)|       |     \   6           6         6           6     /|         /   |im(m)   \/ 3 *re(m)|     |re(m)   \/ 3 *im(m)|       |     \   6           6         6           6     /|

n5 = - 4 /     | + |   + | - |   *cos|| - i*4 /     | + |   + | - |   *sin||

      \/     \   6           6     /     \   6           6     /       \                       2                       /     \/     \   6           6     /     \   6           6     /       \                       2                       /

              /     /                                   \\               /     /                                   \\

          /                       2                         2     |     |im(m)   \/ 3 *re(m)   re(m)   \/ 3 *im(m)||           /                       2                         2     |     |im(m)   \/ 3 *re(m)   re(m)   \/ 3 *im(m)||

        /   /                 \     /                 \       |atan2| + - ||         /   /                 \     /                 \       |atan2| + - ||

        /   |im(m)   \/ 3 *re(m)|     |re(m)   \/ 3 *im(m)|       |     \   6           6         6           6     /|         /   |im(m)   \/ 3 *re(m)|     |re(m)   \/ 3 *im(m)|       |     \   6           6         6           6     /|

n6 = 4 /     | + |   + | - |   *cos|| + i*4 /     | + |   + | - |   *sin||

    \/     \   6           6     /     \   6           6     /       \                       2                       /     \/     \   6           6     /     \   6           6     /       \                       2                       /

oksanakv1950

ответ:

объяснение:

1.

(x+2)(x-3)(x-4) < 0

(-2) (3) (4)

x∈(-∞ -2) u (3   4)

2

(x+5)/(x-2)/(x-1)^2 > =0

[-5] (1) [2]

x∈(-∞ -5] u [2   +∞)

3

(2x+1)/(x-3) < =1

(2x+1)/(x-3) - 1< =0

(2x+1 - x + 3)/(x-3)< =0

(x+4)/(x-3)< =0

[-4] (3)

x∈[-4   3)

4

x/(x-4) + 5/(x-1) +   24/(x-1)(x-4) < =0

(x(x-1) + 5(x-4) + 24)/(x-1)(x-4) < =0

(x^2 - x + 5x - 20 + 24) /(x-1)(x-4) < =0

(x^2-4x+4)/(x-1)(x-4) < =0

(x-2)^2/(x-1)(x-4) < =0

(1) [2] (4)

x∈(1 4)

добро ! получи неограниченный доступ к миллионам подробных ответов

попробуй сегодня

надеюсь если сможешь отметь как лучший

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Решить систему log0, 5х+log0, 5у=-1 х-2у=3
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

M19026789436
Андреевна
struev2003260
bieku68
Posadskii-Sergeevna
timsch12
arnaut-anna
Присакарь520
fashbymsk
household193
natasham-716
aynaakzhigitova
gavrilasmax05
Alekseevna1064
Алина Ракитин1730