У нас известно отношение y к x:
y/x=-3;
Возведем в квадрат, нам это нужно, чтобы найти значение выражения:
(y/x)^2=9;
Возьмем числитель нашего примера:
3y^2-2xy+x^2;
Поделим каждое слагаемое на x^2, чтобы перейти к нашему отношению, сказанному выше.
3*9(-2)*(-3)+1=27+6+1=34. (Минус на минус дают плюс).
Теперь разберем знаменатель:
x^2+xy-y^2; Так же используя отношение, приведенное выше.
Делим все на x^2.
1+(-3)-9=1-3-9=-11.
Теперь совместим в нашу дробь и числитель, и знаменатель , получим:
-34/11, что соответствует - 3 целым 1/11.
ответ: -34/11.
Поделитесь своими знаниями, ответьте на вопрос:
нужно построить в одной системе координат графики функций у = х2 и
у = 2х + 3 . Они пересекаются в двух точках А(- 1; 1) и В(3; 9). Корнями уравнения служат абсциссы точек А и В, значит, х1 = -1, х2 = 3.
я файл вложила правда рисунок не очень ну ты построй и поймешь
х²=2х+3 х²-2х-3 Построим график функции у = х2 - 2х - 3
1) Имеем а = 1, b = -2, х=-b/2a=1, у = f(1) = I2 - 2 - 3 = - 4. Значит, вершиной параболы служит точка (1;- 4), а осью параболы — прямая х = 1.
2) Возьмем на оси х две точки, симметричные относительно оси параболы: точки х = -1 и х =3. Имеем /(-1) = /(3) = 0; отметим в координатной плоскости точки (-1; 0) и (3; 0).
3) Через точки (-1; 0), (1; -4), (3; 0) проводим параболу (рис.1).Корнями уравнения
х2 - 2х - 3 = 0 являются абсциссы точек пересечения параболы с осью х; находим
x1= -1,
x2 = 3
рисовать не буду нет времени
его можно решить