S.V. Zhoraevna1677
?>

2sin2x-2cos2x-√3=0 решите уравнение

Алгебра

Ответы

osherbinin
2sin2x-2cos2x- \sqrt{3} =0 \\
2 (2sinxcosx-cos^2x+sin^2x)-\sqrt{3} =0\\
4sinxcosx-2cos^2x+2sin^2x-\sqrt{3}(cos^2x+sin^2x) =0\\ 
4sinxcosx-(2+\sqrt{3})cos^2x+(2-\sqrt{3})sin^2x=0\\ 
4tgx-(2+\sqrt{3})+(2-\sqrt{3})tg^2x=0\\ 
(2-\sqrt{3})t^2+4t-(2+\sqrt{3})=0 \\
D=16+4*(2-\sqrt{3})*(2+\sqrt{3}) = 16+4(4-3)=16+4=20\\t_{1}= \frac{-4+2 \sqrt{5} }{2(2-\sqrt{3})} = \frac{-2+ \sqrt{5} }{2-\sqrt{3}} \\ t_{2}= \frac{-4-2 \sqrt{5} }{2(2-\sqrt{3})} = \frac{-2- \sqrt{5} }{2-\sqrt{3}} \\ tgx = \frac{-2+ \sqrt{5} }{2-\sqrt{3}} \\x = arctg(\frac{-2+ \sqrt{5} }{2-\sqrt{3}}) + \pi k, k \in Z\\tgx = \frac{-2- \sqrt{5} }{2-\sqrt{3}} \\x = arctg(\frac{-2- \sqrt{5} }{2-\sqrt{3}}) + \pi n, k \n Z
len22
4sinxcosx-2cos²x+2sin²x-√3cos²x-√3sin²x=0
(2-√3)*sin²x+4sinxcosx-(2+√3)*cos²x=0/cos²x
(2-√3)tg²x+4tgx-(2+√3)=0
tgx=a
(2-√3)*a²+4a-(2+√3)=0
D=16+4(2-√3)(2+√3)=16+4*1=20
a1=(-4-2√5)/(4-2√3)=(-2-√5)/(2-√3)⇒tgx=(-2-√5)/(2-√3)⇒
x=arctg[(2+√5)/(√3-2)]+πk,k∈z
a2=(-2+√5)/(2-√3)⇒tgx=(√5-2)/(2-√3)⇒x=arctg[((√5-2)/(2-√3)]+πk,k∈z
Dmitriy2211104
Разложение левой части уравнения на множители.

Решим уравнение

х2 + 10х - 24 = 0.

Разложим левую часть на множители:

х2 + 10х - 24 = х2 + 12х - 2х - 24 = х(х + 12) - 2(х + 12) = (х + 12)(х - 2).

Следовательно, уравнение можно переписать так:

(х + 12)(х - 2) = 0

Так как произведение равно нулю, то, по крайней мере, один из его множителей равен нулю. Поэтому левая часть уравнения обращается нуль при х = 2, а также при х = - 12. Это означает, что число 2 и - 12 являются корнями уравнения х2 + 10х Метод выделения полного квадрата.

Решим уравнение х2 + 6х - 7 = 0.

Выделим в левой части полный квадрат.

Для этого запишем выражение х2 + 6х в следующем виде:

 

х2 + 6х = х2 + 2• х • 3.

В полученном выражении первое слагаемое - квадрат числа х, а второе - удвоенное произведение х на 3. По этому чтобы получить полный квадрат, нужно прибавить 32, так как

х2 + 2• х • 3 + 32 = (х + 3)2.

Преобразуем теперь левую часть уравнения

х2 + 6х - 7 = 0,

прибавляя к ней и вычитая 32. Имеем:

х2 + 6х - 7 = х2 + 2• х • 3 + 32 - 32 - 7 = (х + 3)2 - 9 - 7 = (х + 3)2 - 16.

Таким образом, данное уравнение можно записать так:

(х + 3)2 - 16 =0, (х + 3)2 = 16.

Следовательно, х + 3 - 4 = 0, х1 = 1, или х + 3 = -4, х Решение квадратных уравнений по формуле.

Умножим обе части уравнения

ах2 + bх + с = 0, а ≠ 0

на 4а и последовательно имеем:

4а2х2 + 4аbх + 4ас = 0,

((2ах)2 + 2ах • b + b2) - b2 + 4ac = 0,

(2ax + b)2 = b2 - 4ac,

2ax + b = ± √ b2 - 4ac,

2ax = - b ± √ b2 - 4ac,

Примеры.

а) Решим уравнение: 4х2 + 7х + 3 = 0.

а = 4, b = 7, с = 3, D = b2 - 4ac = 72 - 4 • 4 • 3 = 49 - 48 = 1,

D > 0, два разных корня;

 

Таким образом, в случае положительного дискриминанта, т.е. при

b2 - 4ac >0 , уравнение ах2 + bх + с = 0 имеет два различных корня.

 

б) Решим уравнение: 4х2 - 4х + 1 = 0,

а = 4, b = - 4, с = 1, D = b2 - 4ac = (-4)2 - 4 • 4 • 1= 16 - 16 = 0,

D = 0, один корень;

Итак, если дискриминант равен нулю, т.е. b2 - 4ac = 0, то уравнение

ах2 + bх + с = 0 имеет единственный корень,

 

в) Решим уравнение: 2х2 + 3х + 4 = 0,

а = 2, b = 3, с = 4, D = b2 - 4ac = 32 - 4 • 2 • 4 = 9 - 32 = - 13 , D < 0.

Данное уравнение корней не имеет.

Итак, если дискриминант отрицателен, т.е. b2 - 4ac < 0,

уравнение ах2 + bх + с = 0 не имеет корней.

Формула (1) корней квадратного уравнения ах2 + bх + с = 0 позволяет найти корни любого квадратного уравнения (если они есть), в том числе приведенного и неполного. Словесно формула (1) выражается так: корни квадратного уравнения равны дроби, числитель которой равен второму коэффициенту, взятому с противоположным знаком, плюс минус корень квадратный из квадрата этого коэффициента без учетверенного произведения первого коэффициента на свободный член, а знаменатель есть удвоенный первый коэффициент Решение уравнений с использованием теоремы Виета.

Как известно, приведенное квадратное уравнение имеет вид

 

х2 + px + c = 0. (1)

Его корни удовлетворяют теореме Виета, которая при а =1 имеет вид

x1 x2 = q,

x1 +x2 = - p

Отсюда можно сделать следующие выводы (по коэффициентам p и q можно предсказать знаки корней).

а) Если сводный член q приведенного уравнения (1) положителен (q > 0), то уравнение имеет два одинаковых по знаку корня и это зависти от второго коэффициента p. Если р < 0, то оба корня отрицательны, если р < 0, то оба корня положительны.

Например,

x2 – 3x + 2 = 0; x1 = 2 и x2 = 1, так как q = 2 > 0 и p = - 3 < 0;

x2 + 8x + 7 = 0; x1 = - 7 и x2 = - 1, так как q = 7 > 0 и p= 8 > 0.

б) Если свободный член q приведенного уравнения (1) отрицателен (q < 0), то уравнение имеет два различных по знаку корня, причем больший по модулю корень будет положителен, если p < 0 , или отрицателен, если p > 0 .

Например,

x2 + 4x – 5 = 0; x1 = - 5 и x2 = 1, так как q= - 5 < 0 и p = 4 > 0;

x2 – 8x – 9 = 0; x1 = 9 и x2 = - 1, так как q = - 9 < 0 и p = - 8 < 0.

Объяснение:

Прочитай это, потом поймёшь.

ekatef45

Объяснение: Щоб знайти найбільше і найменше значення функції на відрізку, треба

а) знайти максимуми і мінімуми функції на цьому відрізку. Для цього беруть похідну і прирівнюють її до 0. Рішення  і є критичними точками.

б) знайти значення функції на кінцях відрізку.

в) вибрати найбільше і найменше значення функції.

3. а) g'(x)=(-x²+6x-1)'= -2x+6

       g'(x)=0, -2x+6=0, -2x=-6, x=3

       g(3)= -3²+6·3-1=-9+18-1=8, g(3)=8

  б) [2;4]

       g(2)=-2²+6·2-1=-4+12-1=7, g(2)=7

       g(4)=-4²+6·4-1=-16+24-1=7, g(4)=7

   в) Найбільше значення функції g(3)=8

       Найменше значення функції g(2)=7 і g(4Объяснение: Щоб знайти найбільше і найменше значення функції на відрізку, треба

а) знайти максимуми і мінімуми функції на цьому відрізку. Для цього беруть похідну і прирівнюють її до 0. Рішення  і є критичними точками.

б) знайти значення функції на кінцях відрізку.

в) вибрати найбільше і найменше значення функції.

3. а) g'(x)=(-x²+6x-1)'= -2x+6

       g'(x)=0, -2x+6=0, -2x=-6, x=3

       g(3)= -3²+6·3-1=-9+18-1=8, g(3)=8

  б) [2;4]

       g(2)=-2²+6·2-1=-4+12-1=7, g(2)=7

       g(4)=-4²+6·4-1=-16+24-1=7, g(4)=7

   в) Найбільше значення функції g(3)=8

       Найменше значення функції g(2)=7 і g(4)=7

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

2sin2x-2cos2x-√3=0 решите уравнение
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

ccc712835
neganovaarxi
Mariya694
Borisovich-Volobueva1803
girra
varvara-kulkova
vorobyeva6428
Пономаренко
annasv8
raa-0485428
a1rwalk3r
Сергеевич1907
alyonafialka
oksana77768
kobzev-e