irinabaranova2760
?>

Вычислите с формулы разности квадратов. 32²-34²/22²-44² x45²-41²/31²-55² 67²-33²/43²-77² 0.211²-0.389²

Алгебра

Ответы

fucingprinces30
Решение на фото внизу
Вычислите с формулы разности квадратов. 32²-34²/22²-44² x45²-41²/31²-55² 67²-33²/43²-77² 0.211²-0.38
Anna572

ответ:931

Объяснение:1. Заметим, что 735 имеет следующее разложение на простые множители:

735=72⋅3⋅5,

отсюда следует, что числа x, y, z состоят из тех же простых чисел 7, 3, 5:

 x=7a1⋅3a2⋅5a3;

 y=7b1⋅3b2⋅5b3;

 z=7c1⋅3c2⋅5c3.

При этом  

 0≤a1,b1,c1≤2;

 0≤a2,b2,c2≤1;

 0≤a3,b3,c3≤1.

 2. По правилу нахождения наименьшего общего кратного получим

НОК(7a1⋅3a2⋅5a3;7b1⋅3b2⋅5b3;7c1⋅3c2⋅5c3)=7max(a1,b1,c1)⋅3max(a2,b2,c2)⋅5max(a3,b3,c3).

 3. Итак, задача свелась к нахождению числа решений системы уравнений:

 

⎨max(a1,b1,c1)=2;max(a2,b2,c2)=1;max(a3,b3,c3)=1.

Так как каждое уравнение содержит разные неизвестные, то для того чтобы найти количество решений системы, нужно найти количество решений каждого из уравнений и перемножить полученные значения.

 4.  Начнём с первого уравнения. Требуется найти количество целых неотрицательных чисел a1,b1,c1, удовлетворяющих уравнению max(a1,b1,c1)=2.

Напомним, что 0≤a1,b1,c1≤2. Отсюда следует, что тройка чисел a1,b1,c1 является решением уравнения, если хотя бы одно из чисел a1,b1,c1 равно 2. Для того чтобы посчитать число таких троек, вычтем из количества всевозможных троек чисел a1,b1,c1 с условием 0≤a1,b1,c1≤2 (таких троек ровно 33=27 штук) число троек a1,b1,c1 с условием 0≤a1,b1,c1≤2, в которых 2 ни разу не встречается (таких троек ровно 23=8 штук). Отсюда находим, что первое уравнение системы имеет 27−8=19 решений.

5. Точно так же поступим при подсчёте числа решений второго уравнения системы. Требуется найти количество целых неотрицательных чисел a2,b2,c2, удовлетворяющих уравнению max(a2,b2,c3)=1.

Напомним, что  0≤a2,b2,c2≤1.

Тройка чисел a2,b2,c2 является решением уравнения, если хотя бы одно из чисел  a2,b2,c2 равно 1. Но только одна тройка чисел a2,b2,c2 не удовлетворяет этому условию, это тройка a2=b2=c3=0. Все остальные тройки хотя бы одну 1 содержат. Поскольку троек чисел a2,b2,c2 с условием 0≤a2,b2,c2≤1 ровно 23=8 штук, то второе уравнение системы имеет 8−1=7 решений. Точно так же получаем, что и третье уравнение системы имеет 7 решений.

6. Для того чтобы подсчитать число решений системы, а значит, и исходного уравнения, остаётся перемножить полученные нами числа. Имеем

 19⋅7⋅7=931.

Итак, исходное уравнение имеет ровно 931 решение.

Mikhail579

https://edu.gounn.ru/journal-api-online_lessons-action?action=setStudentDateStart&isExtDay=0&onlineLessonId=48https://edu.gounn.ru/journal-api-online_lessons-action?action=setStudentDateStart&isExtDay=0&onlineLessonId=48https://edu.gounn.ru/journal-api-online_lessons-action?action=setStudentDateStart&isExtDay=0&onlineLessonId=48https://edu.gounn.ru/journal-api-online_lessons-action?action=setStudentDateStart&isExtDay=0&onlineLessonId=48

Объяснение:

https://edu.gounn.ru/journal-api-online_lessons-action?action=setStudentDateStart&isExtDay=0&onlineLessonId=48https://edu.gounn.ru/journal-api-online_lessons-action?action=setStudentDateStart&isExtDay=0&onlineLessonId=48https://edu.gounn.ru/journal-api-online_lessons-action?action=setStudentDateStart&isExtDay=0&onlineLessonId=48https://edu.gounn.ru/journal-api-online_lessons-action?action=setStudentDateStart&isExtDay=0&onlineLessonId=48https://edu.gounn.ru/journal-api-online_lessons-action?action=setStudentDateStart&isExtDay=0&onlineLessonId=48

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Вычислите с формулы разности квадратов. 32²-34²/22²-44² x45²-41²/31²-55² 67²-33²/43²-77² 0.211²-0.389²
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

sveta740450
Ingakazakova
ognevasv555
Yurevich1344
Murad Gushcharin
dp199088206
apetit3502
lbondareva
ryadovboxing
kush-2640
drappaeva68
Мария1414
НиколаевнаФ
akustov55
Erikhovich