Тимур
?>

Множество натуральных чисел номер 6 во вложении​

Алгебра

Ответы

chechina6646
1) 2(1-x)>=5x-(3+2)
2 - 2x >= 5x - 3 - 2
-7x>=-7
x<=1
2) 7x+3>5(x-4)+1
7x + 3 > 5x - 20 + 1
2x > -22
x>-11
3) x^2-9>0
x^2 > 9
x>3
or
x<-3
4) x^2-11x+30<=0
D = 121 - 120 = 1
x1 = (11+1)/2 = 6 => x <= 6
x2 = (11-1)/2= 5 => x>=5 =>    5<=x<=6
5) -2x^2+5x-2<0
D = 25 - 16 =9
x1 = (-5+3)/(-4) = 0,5 => x<0,5
x2 = (-5-3)/(-4) = 2 => x>2
6) (2x+3)(x-1)<0
     {+}                    {+}
oo>x
            -1,5   {-}  1    
-1,5<x<1
7) x(4-x)(x+1)>=0
   {+}            {+}
|||>x
       -1 {-}  0      4 {-}
x<=-1 and 0 <= x <=4
8) (2x-4)/(-x+5)>=0
  {+}              {+}
o|>x
       -5  {-}  2
-5 < x <= 2
de1979nis

Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.

1-ое свойство, которое понадобится

a+c \equiv b + d \ (mod \ m)

То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.

2-ое свойство, которое нам понадобится:

ac \equiv bd \ (mod \ m)

То есть довольно аналогичная вещь в произведении

На нашем примере все увидим

a = 5\cdot 2^{51}+21\cdot 32^{45}

Находим остатки по модулю 31

Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, 16 \equiv (-1) \ (mod \ 17), но сейчас это не нужно), нам повезло, это 32

Учитываем, что 32 \equiv 1 \ (mod \ 31), получаем

5\cdot 2^{51} = 5\cdot 2^1 \cdot 2^{50}=10 \cdot 2^{10\cdot 5} = 10 \cdot (2^{5})^{10}= 10\cdot 32^{10} \equiv 10 \cdot 1^{10} \ (mod \ 31)

То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым

21\cdot 32^{45} \equiv 21 \cdot 1^{45}\ (mod \ 31) \equiv 21 \ (mod \ 31)

Остаток 21, чудесно. Выполняем последний шаг.

5\cdot 2^{51}+21\cdot 32^{45} \equiv 10+21 \ (mod \ 31) \equiv 31 \ (mod \ 31) \equiv 0 \ (mod \ 31)

То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Множество натуральных чисел номер 6 во вложении​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

detymira
gbelihina
azelenkov
dmitrijku
vipppp19743355
А Дзукаев1562
platonovkosty
Koshovkina1721
ольга1801
Viktoriya
Yevgenevich1150
korchags19983941
galichka12
Shamil
ustinov434