На промежутку π/2 < A < π все тригонометрические функции, кроме синуса, принимают отрицательные значения.
По основному тригонометрическому тождеству: cosA = -√(1 - sin²A) = -√(1 - 1/4) = -√(3/4) = -√3/2 По определению тангенса: tgA = sinA/cosA = 1/2:(-√3/2) = -√3/3 Из тождества tgA·ctgA находим котангенс: ctgA = 1/tgA = 1/(-√3/3) = -√3
alazaref
08.09.2020
П/2 < a < п - 2 четверть. tg a, cos a, ctg a - отрицательны.
Из основного тригонометрического тождества имеем, что
zalev
08.09.2020
1) Боря берет конфеты по арифметической прогрессии: 1, 3, 5, ... a1(1) = 1; d1 = 2 Миша - тоже по арифметической прогрессии a2(1) = 2; d2 = 2 Всего Боря взял S1(n) = (2a1 + d(n-1))*n/2 = (2 + 2(n-1))*n/2 = (1 + n - 1)*n = n^2 = 60 7 < n < 8 Значит, n = 7, предпоследний раз Боря взял a1(7) = 1 + 2*6 = 13. И у Бори получилось S1(7) = 7^2 = 49 конфет. Но мы знаем, что всего он взял 60 конфет. Значит, в последний раз 11. Миша последний раз взял 14. Это тоже 7-ой раз. Всего Миша взял S2(7) = (2*2 + 2*6)*7/2 = 2*8*7/2 = 56 Всего конфет было 60 + 56 = 116
2) 231 = 3*7*11 На каждом этаже квартир больше 2, но меньше 7, то есть 3. Допустим, в доме 7 этажей. Тогда в одном подъезде 3*7 = 21 квартира. Квартира номер 42 - последняя во 2 подъезде. Квартир с номерами больше 42 во 2 подъезде нет. Значит, в доме 11 этажей. Тогда в одном подъезде 3*11 = 33 квартиры. Квартира номер 42 - последняя на 3 этаже.
fialkaflowers77
08.09.2020
Формула сокращенного умножения (а+в)^2 выражение в квадрате, т.е. умножить само на себя два раза (а+в)^2=(а+b)*(a+b) умножить многочлен на многочлен, т.е. каждое слагаемое первого множителя умножаем на каждое слагаемое второго (а+в)^2=(а+b)*(a+b)=а*(a+b)+b*(a+b)= умножение одночлена на многочлен по распределительному закону (а+в)^2=(а+b)*(a+b)=а*(a+b)+b*(a+b)=a*a+a*b+a*b+b^2 приводим подобные слагаемые (а+в)^2=(а+b)*(a+b)=а*(a+b)+b*(a+b)=a*a+ a*b+a*b+b^2=a^2+2ab+b^2 (а+в)^2=a^2+2ab+b^2 -формула сокращенного умножения, запоминаем первое и последнее, пропуская выкладки
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Найти cosa, tga, ctga если sina = 1/2 и пи/2 < a < пи
По основному тригонометрическому тождеству:
cosA = -√(1 - sin²A) = -√(1 - 1/4) = -√(3/4) = -√3/2
По определению тангенса:
tgA = sinA/cosA = 1/2:(-√3/2) = -√3/3
Из тождества tgA·ctgA находим котангенс:
ctgA = 1/tgA = 1/(-√3/3) = -√3