zvezda-71
?>

Вычислите: 1 1/22*3 2/3-(2 5/6+ 3 5/6*7/23)*3/5

Алгебра

Ответы

polina25258
Выбери ответ лучшим
Вычислите: 1 1/22*3 2/3-(2 5/6+ 3 5/6*7/23)*3/5
videofanovitch
Существует два перевода из периодической дроби в обыкновенную: 1) надо из числа, стоящего до второго периода, вычесть число, стоящее до первого периода и записать эту разность в числитель, а в знаменателе написать цифру 9 столько раз, сколько цифр в периоде, и после девяток дописать 
столько нулей, скока цифр между запятой и первым периодом: 0,11(6)                116-11     105     7  0,11(6)===                900         900     60               235-2        233 0.2(35)= =                990         990  2)    а)Найдем период дроби, т.е. подсчитаем, сколько цифр находится в периодической части. К примеру, это будет число k.    б)Найдем значение выражения X · 10k    в)Из полученного числа надо вычесть исходное выражение. При этом периодическая часть «сжигается», и остается обычная дробь.    г)В полученном уравнении найти X. Все десятичные дроби переводим в обыкновенные. 0,11(6)=Х k=1 10^(k)=1 тогда x*10=10*0,116666...=1,166666... 10X-X=1,166666...-0,116666...=1,16-0,11=1,05 9X=1,05      105       7 X==      900       60 0.2(35): k=2 10^k=100 100X=0.2353535...*100=23,535353 100X-X=23,535353-0.2353535=23,3 99x=23,3       233 x=       900
jardi

Находим частные производные:

∂z/∂x=6y-18x+4

∂z/∂y=6x-18y+4

Находим стационарные точки:

{∂z/∂x=0  ⇒ 6y-18x+4=0

{∂z/∂y=0 ⇒ 6x-18y+4 =0

Решаем систему:

{ 6y-18x+4=0 ( умножаем на 3)

{6x-18y+4 =0

{ 18y-54x+12=0

{6x-18y+4 =0

cкладываем

-48х+16=0

х=1/3

y=1/3

Стационарная точка (1/3;1/3)  принадлежит области ( см. рис)

Находим вторые частные производные

∂²z/∂x²=-18

∂²z/∂y²=-18

∂²z/∂x∂y=6

A=-18; B=-18: C =6

Δ=AB-C²=(-18)·(-18) -6²>0

A < 0

(1/3;1/3) - точка максимума

z(1/3;1/3)=6·(1/3)·(1/3)-9·(1/3)²-9·(1/3)²+4·(1/3)+4·(1/3)=(2/3)-1-1+(8/3)=4/3 - наибольшее значение функции

На границе

При x=0

z=-9y²+4y

Квадратичная функция при 0 ≤y ≤2

z`=-18y+4

z`=0

y=4/18=2/9 - точка максимума

z(2/9)=-9·(2/9)²+4·(2/9)=(-4/9)+(8/9)=4/9 < 4/3

z(0)=0

z(2)=-9·2²+4·2=-28

При y=0

z=-9x²+4x

Квадратичная функция при 0 ≤x ≤1

z`=-18y+4

z`=0

y=4/18=2/9 - точка максимума

z(2/9)=-9·(2/9)²+4·(2/9)=(-4/9)+(8/9)=4/9 < 4/3

z(0)=0

z(1)=-9·1²+4·1=-5 > -28

При х=1

z=6y-9-9y²+4+4y, исследуем на [0;2], 0 ≤y≤2

z(y)=-9y²+10y-5  - квадратичная функция

z`=-18y+10

z`=0

-18y+10=0

y=10/18=5/9  - точка максимума

при y=5/9

z=-9·(5/9)²+10·(5/9)-5 =- (25/9)+(50/9) -5 =-20/9

Находим значения на концах

z(0)=-5

z(2)=-9·2²+10·2-5=-21 > -28

При y=2

z=12x-9x²-9·2²+4x+4·2, исследуем на [0;1], 0 ≤x≤1

z(y)=-9x²+16x-28  - квадратичная функция

z`=-18x+16

z`=0

-18x+16=0

x=16/18=8/9  - точка максимума

при x=8/9

z=-9·(8/9)²+16·(8/9)-28 =- (64/9)+(128/9) -28 >-28

Находим значения на концах

z(0)=-28

z(1)=-9·1²+16·1-28=-21 > -28

z(1/3;1/3)=4/3 - наибольшее значение функции в области

z(1;2) =-28 -  наибольшее значение функции в области


наименьшее и наибольшее значения функции z=6xy-9x^2-9y^2+4x+4y в области ограниченной прямыми х=0, х

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Вычислите: 1 1/22*3 2/3-(2 5/6+ 3 5/6*7/23)*3/5
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

fox-cab3444
Kozlovao4
annino
obelov
Климова1317
marketing
Batrakova-Anna
andrew55588201824
voen-torg
Aleksandrova Zhanna1250
druzhbamagazin2457
Рожков Зейдан460
Ivanova55878
ЧумичеваГеннадьевна1827
Panei