Неравенство будет выполняться на промежутке x∈[-2;2];
siyaniemoskva
27.12.2021
ответ [-2;2] ...............
merx80
27.12.2021
Задание: разложить на множители. множители - компоненты при умножении ⇒выражение представляет собой произведение многочленов. преобразовать данное выражение так, чтобы в каждом слагаемом были одинаковые множители. 1. m-n+p(m-n). 3-е слагаемое состоит из двух множителей р и (m-n), значит первое и второе слагаемое группируем и записываем (m-n). необходимо представить в виде произведения двух множителей. один множитель (m-n), второй множитель в этом слагаемом может быть только 1. получаем: m-n+p(m-n)=(m-n)*1+p*(m-n)=(m-n)*(1-p)
4q(p-1)+p-1=4q*(p-1)+(p-1)*1=(p-1)*(4q+1)
4q(p-1)+1-p=4q*(p-1)-1*(p-1)=(p-1)*(4q-1)
Lusiarko65
27.12.2021
7.1 Вася и Толя обменялись значками. До обмена у Васи было на 5 значков больше, чем у Толи. По- сле того, как Вася обменял 24% своих значков на 20% значков Толи, у Васи стало на один зна- чок меньше, чем у Толи. Сколько значков было у мальчиков до обмена? ответ. У Толи было 45 значков, у Васи – 50 значков. Решение. Пусть до обмена у Толи было x значков, тогда у Васи было (x + 5) значков. После обмена у Толи стало 25 6 5 5 x x x , а у Васи 25 5 6 5 5 x x x . Решая уравнение 1, 25 5 6 5 5 25 6 5 5 x x x x x x находим x = 45. 7.2. Существуют ли дробные (нецелые) числа x, y такие, что оба числа 13x 4y и 10x 3y целые? ответ. Не существуют. Решение. Пусть 13x + 4y = m, 10x + 3y = n, где m и n – целые. Решим эту систему уравнений, домножив первое уравнение на 3, а второе – на 4. Вычитая уравнения, получим x = – 3m +4n, т.е. x – целое число. 7.3. Найдется ли среди первых 500 натуральных чисел 1, 2, …, 500 серия, состоящая из подряд иду- щих а) девяти составных чисел; б) одиннадцати составных чисел? ответ: а) да; б) да. Решение. Можно привести искомую серию из 11 составных чисел: 200, 201, …, 210. Объясним сначала, как найти подобную серию из 9 составных чисел. Есть 4 простых числа меньше 10: это 2, 3, 5, 7. Их произведение равно 210. Поэтому при любом целом k каждая из двух серий 210k 2,210k 3,...,210k 10 и 10 210k 2, 210k 3,...,210k состоит из 9 составных чисел. Это отвечает на вопрос пункта а) при k = 1 или 2. Если заметить, что 20911, то получим ответ на вопрос б). 7.4. На сторонах АВ и ВС треугольника АВС взяты точки М и N соответственно. Оказалось, что пе- риметр AMC равен периметру CNA, а периметр ANB равен периметру CMB. Докажите, что ABC равнобедренный. Решение. Будем обозначать периметр буквой P. Из условия задачи имеем P(AMC) + P(CMB) = P(CNA) + P(ANB). Отсюда P(ABC) + 2 CM = P(ABC) + 2 AN. Значит CM = AN. Из этого соотношения, учитывая равенство периметров треугольников AMC и CAN, получим, что AM = NC. Поэтому тре- угольники AMC и CAN равны по трем сторонам. Тогда A = C, значит, ABC равнобедренный.
x²=4 ⇒ x1=-2; x2=2
+ - +
----------●-------------●--------->
-2 2 x
Неравенство будет выполняться на промежутке x∈[-2;2];