№ 2:
при каком значении параметра a уравнение |x^2−2x−3|=a имеет три корня?
введем функцию
y=|x^2−2x−3|
рассмотрим функцию без модуля
y=x^2−2x−3
y=(x−3)(х+1)
при х=3 и х=-1 - у=0
х вершины = 2/2=1
у вершины = 1-2-3=-4
после применения модуля график отражается в верхнюю полуплоскость
при а=0 - 2 корня (нули х=3 и х=-1)
при 0< а< 4 - 4 корня (2 от исходной параболы, 2 от отображенной части)
при а=4 - 3 корня (2 от исходной параболы, 1 от вершины х=1)
при а> 4 - 2 корня (от исходной параболы)
ответ: 4
Одно число n, следующее за ним (n+1)
Разность квадратов двух последовательных натуральных чисел
(n+1)²-n²
(Из бо`льшего вычитаем меньшее, потому что по условию разности квадратов неотрицательны
Следующие два последовательных натуральных чисел это (n+2) и (n+3)
Разность квадратов следующих двух последовательных натуральных чисел
(n+3)²-(n+2)²
(Здесь тоже из бо`льшего вычитаем меньшее)
Сумма разностей квадратов по условию равна 18.
Уравнение
((n+1)²-n²) + ((n+3)²-(n+2)²)=18
(n²+2n+1-n²)+(n²+6n+9-n²-4n-4)=18
2n+1+2n+5=18
4n=12
n=3
3; 4 и 5;16
(6²-5²)+(4²-3²)=11+7
11+7=18 - верно
Поделитесь своими знаниями, ответьте на вопрос:
Замените выражение тождественно равным, используя распределительное свойство умножения: а)1, 2*(5-а) б) (m-4x)*(-6) в)2, 5*(4х-6у-2) г)-0, 1*(100а+10b-c)
б) 24х - 6m
в) 10х - 15у - 5
г) 0,1с - 10а - b