Б) f(x)=4-2x f`(x)=(4-2x)`=(4)`-(2x)`=0-2·(x)`=-2·1=-2 Применили правила: производная суммы( разности) равна сумме( разности) производных Производная постоянной (C)`=0 Постоянный множитель можно вынести за знак производной (х)`=1 Производная принимает во всех точках одно и то же значение (-2) f`(0,5)=f`(-3)=-2
в) f(x)=3x-2 f`(x)=(3x-2)`=(3х)`-(2)`=3·(x)`-0=3·1=3 Применили правила: производная суммы( разности) равна сумме( разности) производных Производная постоянной (C)`=0 Постоянный множитель можно вынести за знак производной (х)`=1 Производная принимает во всех точках одно и то же значение (3) f`(5)=f`(-2)=3
Viktoromto
08.07.2021
Разделим обе части уравнения на cos^2(x), получим: 2tg^2(x) + tgx - 3 = 0 D = 1 + 24 = 25 tgx = -1.5, x = -arctg(1.5) + πk, k∈Z tgx = 1, x = π/4 + πk, k∈Z Найдем корни x1, x2, которые принадлежат интервалу (0;π) 0 < -arctg(1.5) + πk < π arctg(1.5)/π < k < 1 + (arctg(1.5)/π), k∈Z k = 1, x1 = -arctg(1.5) + π 0 < π/4 + πk < π -0.25 < k < 0.75, k∈Z k = 0, x2 = π/4 Найдем теперь 5tg(x1+x2) = 5tg(π/4 + π - arctg(1.5)) = 5tg(π/4 - arctg(1.5)) = 5*(tg(π/4) -tg(arctg(1.5))/(1 + tg(π/4)*tg(arctg(1.5))) = 5*(1 - 1.5)/(1 + 1.5) = -5*0.5/2.5 = -1
f`(x)=(4-2x)`=(4)`-(2x)`=0-2·(x)`=-2·1=-2
Применили правила:
производная суммы( разности) равна сумме( разности) производных
Производная постоянной (C)`=0
Постоянный множитель можно вынести за знак производной
(х)`=1
Производная принимает во всех точках одно и то же значение (-2)
f`(0,5)=f`(-3)=-2
в) f(x)=3x-2
f`(x)=(3x-2)`=(3х)`-(2)`=3·(x)`-0=3·1=3
Применили правила:
производная суммы( разности) равна сумме( разности) производных
Производная постоянной (C)`=0
Постоянный множитель можно вынести за знак производной
(х)`=1
Производная принимает во всех точках одно и то же значение (3)
f`(5)=f`(-2)=3