при делении точкой отрезка на 2 части, относящиеся как m к n, есть формула для вычисления координат этой точки:
ищем длины сторон: для этого используем формулу
находим координаты точки C:
теперь определим вид треугольника для этого используем теорему косинусов: вид треугольника будем определять по косинусу самого большого угла; если cos<0, то угол тупой; если cos=0, то угол прямой; если cos>0, то угол острый. Против большей стороны лежит больший угол, поэтому запишем теорему косинусов для DK и косинуса угла E:
cosE<0 поэтому угол тупой и треугольник тупоугольный ответ: 1) 2) треугольник тупоугольный
zeltos384
21.01.2023
Так как EC - биссектриса, то:
при делении точкой отрезка на 2 части, относящиеся как m к n, есть формула для вычисления координат этой точки:
ищем длины сторон: для этого используем формулу
находим координаты точки C:
теперь определим вид треугольника для этого используем теорему косинусов: вид треугольника будем определять по косинусу самого большого угла; если cos<0, то угол тупой; если cos=0, то угол прямой; если cos>0, то угол острый. Против большей стороны лежит больший угол, поэтому запишем теорему косинусов для DK и косинуса угла E:
cosE<0 поэтому угол тупой и треугольник тупоугольный ответ: 1) 2) треугольник тупоугольный