Илья Владимировна
?>

Определите моду, среднее арифметическое и размах ряда 15, 4, 12, -3, 15.

Алгебра

Ответы

ivanlimeexpo
Определите моду, среднее арифметическое и размах ряда 15,4,12,-3,15.

Модой ряда чисел называется число, которое встречается в данном ряду чаще других.

Модa -  15

среднее арифметическое =(15+4+12-3+15)/5=43/5=8,6

Размахом ряда чисел называется разность между наибольшим и наименьшим из этих чисел.

15-(-3)=18
sergeevich

Иррациона́льное число́ — это вещественное число, которое не является рациональным, то есть не может быть представлено в виде обыкновенной дроби {\displaystyle \pm {\frac {m}{n}}}{\displaystyle \pm {\frac {m}{n}}}, где {\displaystyle m,n}m,n — натуральные числа. Иррациональное число может быть представлено в виде бесконечной непериодической десятичной дроби.

Иррациональные числа

ζ(3) — ρ — √2 — √3 — √5 — ln 2 — φ,Φ — ψ — α,δ — e — {\displaystyle e^{\pi }}e^{\pi } и π

Другими словами, множество иррациональных чисел есть разность {\displaystyle \mathbb {I} =\mathbb {R} \backslash \mathbb {Q} }{\displaystyle \mathbb {I} =\mathbb {R} \backslash \mathbb {Q} } множеств вещественных и рациональных чисел.

О существовании иррациональных чисел (точнее отрезков, несоизмеримых с отрезком единичной длины), знали уже древние математики: им была известна, например, несоизмеримость диагонали и стороны квадрата, что равносильно иррациональности числа {\displaystyle {\sqrt {2}}}{\sqrt {2}}[1].

К числу иррациональных чисел относятся отношение π окружности круга к его диаметру, число Эйлера e, золотое сечение φ и квадратный корень из двух[2][3][4]; на самом деле все квадратные корни натуральных чисел, кроме полных квадратов, иррациональны.

Иррациональные числа также могут рассматриваться через бесконечные непрерывные дроби. Следствием доказательства Кантора является то, что действительные числа неисчислимы, а рациональные счетны, отсюда следует, что почти все действительные числа иррациональны[5].

eisakov86
Task/28555810 решите тригонометрическое уравнение  2cosx + |cosx|=2sin2x*sin(π/6)      решение:     2cosx  +  |cosx|=sin2x        * * * sin( π/6) =1/2 * * *   2cosx  +  |cosx|=2sinxcosx                  * * *    sin2x = 2sinxcosx * * * а)  cosx < 0cosx  = 2sinxcosx  ;                                 * * * |cosx| = - cosx * * * 2cosx(sinx -1/2) = 0  ; sinx =1/2 ; x =(π-π/6)+2πk ,k  ∈  ℤ x =5π/6 +2πk ,k  ∈  ℤ . б)  cosx=0  x = π/2 +πn ,  n  ∈  ℤ в)  cosx > 0                * * * |cosx| = -  cosx * * * 3cosx  =  2sinxcosx ; 2cosx(sinx -3/2) =0    ⇒   x  ∈ ∅ .    * * * sinx ≠ 3/2 > 1 * * * ответ:     5π/6 +2πk ,  π/2 +πn            k,n ∈  ℤ .  

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Определите моду, среднее арифметическое и размах ряда 15, 4, 12, -3, 15.
Ваше имя (никнейм)*
Email*
Комментарий*