в первом находим при каком х, будет равно 0 выражение.
во втором, тоже надо бы найти при каком х, будет у=0, но такого не может быть.
apetit3502
18.06.2022
1) раскрываешь скобки, потом переносишь все влево, а справа оставляешь ноль. далее получается квадрат числа + положительное число больше нуля- это и есть доказательство 2) раскрываешь скобки, переносишь все в одну сторону х сокращается остается, что положительное число больше нуля, т.к. х сократился, то выражения верны при любом значении переменной х 3) переносим все в одну сторону далее подгоняем это выражение под формулу квадрата разности или суммы, два положительных числа больше нуля⇒доказано
а) (2у-1)^2+13≥0 б) (3х-у)^2+6y^2≥0
kristinagaspa62
18.06.2022
Для приведенного квадратного уравнения (т.е. такого, коэффициент при x² в котором равенединице) x² + px + q = 0 сумма корней равна коэффициенту p, взятому с обратным знаком, апроизведение корней равно свободному члену q:
В случае неприведенного квадратного уравнения ax² + bx + c = 0:
x1 + x2 = -b / a x1 · x2 = c / aТеорема Виета хороша тем, что, не зная корней квадратного трехчлена, мы легко можем вычислить их сумму и произведение, то есть простейшие симметричные выражения x1 + x2 и x1 · x2. Так, еще не зная, как вычислить корни уравнения x² – x – 1 = 0, мы, тем не менее, можем сказать, что их сумма должна быть равна 1, апроизведение должно равняться –1.Теорема Виета позволяет угадывать целые корни квадратного трехчлена. Так, находя корни квадратного уравнения x² – 5x + 6 = 0, можно начать с того, чтобы попытаться разложить свободный член (число 6) на два множителя так, чтобы их сумма равнялась бы числу 5. Это разложение очевидно: 6 = 2 · 3, 2 + 3 = 5. Отсюда должно следовать, что числа 2 и 3 являются искомыми корнями.
ответ:
1 х=0, х=-√3, х=√3
2) не имеет экстремумов
объяснение:
в первом находим при каком х, будет равно 0 выражение.
во втором, тоже надо бы найти при каком х, будет у=0, но такого не может быть.