Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
3x² - 15х = x² + 50,
3x² - x² - 15x - 50 = 0,
2x² - 15x - 50 = 0,
D = (-15)² - 4 · 2 · (-50) = 225 + 400 = 625 ; √625 = 25,
x₁ = (15 + 25)/(2 · 2) = 40/4 = 10,
x₂ = (15 - 25)/(2 · 2) = -10·/4 = -2,5 - не подходит по условию задачи.
Значит, сторона квадрата равна 10 см.
ответ: 10 см.
Поделитесь своими знаниями, ответьте на вопрос:
ОЧЕНЬ НУЖНО Для данной функции найдите наименьший положительный период.1. y = sin 3t 2. y = cos 4t 3. y = tg 5t 4. y= ctg 2/3t5. y= tg 3t/26. y= 4sin t/57. y= 1/2cos 3t/48. y= sin 2, 5t9. y= cos 1, 3t10. y= tg 0, 7t11. y = cos(t/2+)12. y = sin(2t-)13. y = tg(t/2+) 14. y = 3sin(t/2+)15. y =
Посчитаем сначала количество чисел, записываемых цифрами от
до
, а затем из этого числа вычтем те, среди которых есть четыре идущих подряд. Сразу заметим, что если в таком числе есть четыре подряд идущих числа, то и в самом числе они должны идти подряд.
Выпишем числа от
до
:
. Любые
вычеркнутых цифры оставят число, в котором цифры идут по возрастанию. Наоборот, любое такое число может быть получено описанной операцией. Число вычеркнуть:
.
Теперь посчитаем количество тех, в которых есть четыре подряд идущих. В этом случае мы можем вычеркивать только из
-ех оставшихся чисел. Поскольку четверок подряд идущих
, то всего искомых чисел
.
Итого
.