1 этап составление модели.
2 этап работа с моделью
3 этап ответ
составление модели: пусть а см - одна сторона прямоугольника, b см - другая сторона. периметр будет равен 2(a+b) см. по условию периметр равен 50. значит 2(a+b)=50
При увеличении стороны в 3 раза, то есть 3a см, а другой стороны уменьшив на 7см, то есть (b-7) см, получим периметр 2(a+(b-7)) см, по условию он равен 84 см. получим второе уравнение 2(a+(b-7))=84
решив систему из двух уравнений
2 этап
2(a+b)=50
2(3a+(b-7))=84
выразим из первого уравнения b=50:2-a
b= 25-a
подставим значение b во второе уравнение
2(3a+(25-a))=84
раскроем скобки и решим
получим 3a-a=42+7-25
a=12. b=13
ответ.
Одна сторона прямоугольн ка равна 12 см, другая 13 см
Поделитесь своими знаниями, ответьте на вопрос:
Реши методом алгебраического сложения систему уравнений. {2y−4x=−102y+x=2 ответ: (при необходимости ответ округли до десятитысячных!) x= ;y= .
4х=-8
х=-2 В любое уравнение подставить х=-2 , например , в первое :
2·(-2)+5у=36
-4+5у=36
5у=36+4
5у=40
у=40:5
у=8
ответ : (-2;8)
2)9у-4х=-13 и -4х-9у=-67 складываем первое и второе уравнение , получим
-8х=-80 ( складывайте только соответствующие переменные и значения )
х=10
подставить х=10 в любое уравнение системы , например , во второе:
-4·10-9у=-67
-40-9у=-67
-9у=-67+40
-9у=-27
у=-27:(-9)
у=3
ответ:(10;3)
3)7у-9х=36 и -9х-7у=-90 Складываем первое и второе уравнение системы
7у+(-7у)-9х+(-9х)=-90+36
-18х=-54
х=3
подставим значение х=3 в любое уравнение системы , например , в первое : 7у-9·3=36
7у-27=36
7у=27+36
7у=63
у=63:7
у=9
ответ:(3;9)