Решаешь как квадратное относительно х, получаешь D=-8(y+5)^2>=0 при у=-5. Подставляешь у=-5, получаешь 3(x^2+6x+9), =>x=-3. Есть еще -2ху, => ищем (ax+by)^2, причем известно, что х=-3, у=-5 , => выделяем (5x-3y)^2:
(5x-3y)^2=25x^2-30xy+9y^2.
В условии есть -2ху, а у нас -30ху, => умножаем условие на 15.
Синтез:
Умножим данное неравенство на 15:
45x^2+15y^2+60y-30xy+330.
Выделяем 25x^2-30xy+9y^2:
(25x^2-30xy+9y^2)+(20x^2+120x+180)+(6y^2+60y+150)==(5x-3y)^2+20(x+3)^2+6(y+5)^2>=0 - очевидно. Доказано!
Объяснение:
Формулы для квадратов
(a + b)2 = a2 + 2ab + b2 – квадрат суммы
(a – b)2 = a2 – 2ab + b2 – квадрат разности
a2 – b2 = (a – b)(a + b) – разность квадратов
(a + b + c)2 = a2 + b2 + c2 + 2ab + 2ac + 2bc
Формулы для кубов
(a + b)3 = a3 + 3a2b + 3ab2 + b3 – куб суммы
(a – b)3 = a3 – 3a2b + 3ab2 – b3 – куб разности
a3 + b3 = (a + b)(a2 – ab + b2) – сумма кубов
a3 – b3 = (a – b)(a2 + ab + b2) – разность кубов
Формулы для четвёртой степени
(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4
(a – b)4 = a4 – 4a3b + 6a2b2 – 4ab3 + b4
a4 – b4 = (a – b)(a + b)(a2 + b2)
Формулы для n-той степени
(a + b)n = an + nan – 1b + n(n – 1) 2 an – 2b2 + ... + n! k!(n – k)! an – kbk + ... + bn
(a - b)n = an - nan – 1b + n(n – 1) 2 an – 2b2 + ... + (-1)k n! k!(n – k)! an – kbk + ... + (-1)nbn
Объяснение:
Надеюсь все понятно
Поделитесь своими знаниями, ответьте на вопрос:
Упростить выражение. Дано выражение следующего вида:
Вот ответ .........................