svetlana-ladyga
?>

Боковая сторона равнобедренного треугольника на 4см. длиннее основания. найти стороны треугольника если его периметр равен 25см.

Алгебра

Ответы

mbrilliantova
1. y= \frac{1}{2} (x-2)^2 \\ \\ 8=\frac{1}{2} (x-2)^2 \\ \\ (x-2)^2=16 \\ x-2=+-4 \\ \left \{ {{x_1=-2} \atop {x_2=6}} \right.
---------------------------------------------------
y= \frac{1}{2} x^2 \\ \\ 8=\frac{1}{2} x^2 \\ \\ x^2=16 \\ \left \{ {{x_1=-4} \atop {x_2=4}} \right.
---------------------------------------------------
y= \frac{1}{2} (x+2)^2 \\ \\ 8=\frac{1}{2} (x+2)^2 \\ \\ (x+2)^2=16 \\ x+2=+-4 \\ \left \{ {{x_1=-6} \atop {x_2=2}} \right.

======================================================

2. 
\frac{1}{2} x^2 - расположен симметрично оси Y

\frac{1}{2} (x+2)^2 - график сдвинут по оси Х на 2 влево

\frac{1}{2} (x-2)^2 - график сдвинут по оси Х на 2 вправо

======================================================

3.
\frac{1}{2} x^2=0 \\ \\ x^2=0 \\ x=0
---------------------------------------------------
\frac{1}{2} (x+2)^2=0 \\ \\ (x+2)^2=0 \\ x+2=0 \\ x=-2
сдвиг по оси Х на 2 влево
---------------------------------------------------
\frac{1}{2} (x-2)^2=0 \\ \\ (x-2)^2=0 \\ x-2=0 \\ x=2
сдвиг по оси Х на 2 вправо

======================================================

4. 
а) 
     1) y=\frac{1}{2} (x+2)^2      x∈(-\infty;-2)
     2) y=\frac{1}{2} x^2                x∈(-\infty;0)
     3) y=\frac{1}{2} (x-2)^2       x∈(-\infty;2)
---------------------------------------------------
б)
     1) y=\frac{1}{2} (x+2)^2      x∈(-2; +\infty)
     2) y=\frac{1}{2} x^2                x∈(0; +\infty)
     3) y=\frac{1}{2} (x-2)^2       x∈(2; +\infty)
---------------------------------------------------
в)
     1) y=\frac{1}{2} (x+2)^2      x=-2
     2) y=\frac{1}{2} x^2                x=0
     3) y=\frac{1}{2} (x-2)^2       x=2
Суханова1532

из условия вытекает, что в равнобедренной трапеции АВСД боковые стороны и меньшее основание равны АВ=ВС=СД. Также одинаковы углы, прилежащие к большему основанию ДАВ=СДА=70 гр.

Отсюда вытекает, что углы АВС=ВСД=110 гр.

S трапеции=1/2(a+b)h, где а - АД, b - ВС, h - ВЕ (высота)

Р=АВ+ВС+СД+АД

для того, чтобы найти АВ=ВС=СД проводим диагональ АС.

Т.к. АВ=ВС - равнобедренный треугольник, следовательно углы САВ=АСВ=35 гр. Следовательно, АС является биссектрисой угла ДАВ, отсюла угол САД=35 гр. и, соответственно, АСД=75 гр. По формуле синусов находи АС=АД*sinСДА/sinАСД=20*sin70/sin75=20*0,9397/0,9659=19,4575

По формуле косинусов находим стороны АВ=ВС=СД=АС/2*cosАВЕ=19,4575/2*0,8192=11,8759

Находим периметр Р=АВ+ВС+СД+АД=55,6277

Теперь необходимо найти высоту ВЕ. Получается прямоуголоный треугольник с углами ВАЕ=70 гр., АЕВ=90 гр. и АВЕ=30 гр. По формуле косинусов находим ВЕ=АВ*cosАВЕ=11,8759*0,9397=11,1598

находим площадь: S трапеции=1/2(АД+ВС)*ВЕ=177,8643

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Боковая сторона равнобедренного треугольника на 4см. длиннее основания. найти стороны треугольника если его периметр равен 25см.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

shchepinasm
Сухроб944
pbttehnology
Кирилл-Анна1023
shelep19789
Vladimirovna1858
Anatolevich1506
И.Д.1065
yuliyastatsenko3894
Daletskaya982
kgrechin
Tochkamail370
Смирнов_Андрей691
Alisa
галина