1). -x-9x=2; -10x=2; x=2/(-10)= -0,2. ответ: x= -0,2. 2). -6x-4x=5; -10x=5; x=5/(-10)= -0,5. ответ: x= -0.5.
Следовательно,
, значит, функция ни четная, ни нечетная; непериодическая.
Если , то , значит (0; 1) — точка пересечения с осью ординат. Если , то есть , то . Таким образом, функция не имеет точек пересечения с осью абсцисс.
Значит, (0; 1) — единственная точка пересечения графика функции с осями координат.
Поскольку и — точки разрыва функции и и , то — вертикальная асимптота.
Если , то ; если , то .
Найдем наклонные асимптоты :
Следовательно, — наклонная асимптота.
Найдем критические точки, приравняв первую производную к нулю: откуда и .
Заполним таблицу №1 (см. вложение).
Если , то есть , то , значит, нет точек перегиба.
Систематизируем данные, полученные по второй производной, в таблицу №2.
График функции изображен на рисунке (см. вложение).
Из графика делаем вывод:
ООФ: x ∈ (-;4)
Объяснение:
I. Найдем точки, в которых знаменатель дроби будет равен нулю:
1) = 0 - корень может быть равен 0, только если подкоренное выражение равно 0
2) 8 + 10x - 3 = 0
3) 3 - 10x - 8 = 0
D = 100 + 96 = 196 =
x₁ = = 4
x₂ = = -
x ∈ (-∞; -)∪(-;4)∪(4;∞)
II. Подкоренное выражение не может быть отрицательным, поэтому 8 + 10x - 3 должно быть больше или равно нулю
1) 8 + 10x - 3 ≥ 0
Корни те же: x₁ = 4 и x₂ = -
Так как нам нужны положительные значения, и у нас парабола ветвями вниз, то берем все точки между полученными корнями.
Выходит: x ∈ [-; 4]
III. Сводим эти значения в одну систему:
x ∈ (-∞; -)∪(-;4)∪(4;∞)
x ∈ [-; 4]
Пересечение - x ∈ (-;4)
Поделитесь своими знаниями, ответьте на вопрос:
Как решить уравнение -х-2=9х; -6х-5=4х подскажите
-х-2=9х
-х-9х=2
-10х=2
-х=2/10
х=-1/5
Проверка:
-(-1/5)-2=9·(-1/5)
1/5-2=-9/5
-9/5=-9/5
-6х-5=4х
-6х-4х=5
-10х=5
-х=5/10
х=-1/2
Проверка:
-6·(-1/2)-5=4·(-1/2)
3-5=-2
-2=-2