НиколаевнаОльга
?>

Целое выражение! 5(a-2)(a+2)-1/2(8a-6)+17 !

Алгебра

Ответы

Alex-kustov
Пять а в квадрате минус четыре а
5а2 -- 4а
Барскова1943
...=5а^2-20-4а+3+17=5а^2-4а
ответ: 5а^2-4а
dmitzu8594

1) Пооскольку по условию AM = MB(из того, что CM-медиана), а AH = HC = 2, то MH-средняя линия ΔABC. MH = 0.5BC.

2)Рассмотрим ΔABH,<H=90°. AB = 3*2 = 6 - по свойству медианы. AH = 2. По теореме Пифагора, BH = √6² - 2² = √32 = 4√2.

3)рассмотрю ΔHBC,<H = 90°. По теореме Пифагора, BC = √(4√2)² + 4 = √36 = 6.

HM = 0.5 * 6 = 3.

 

Либо можно было решить чуть проще.  Рассмотрим ΔABH,<H = 90°. Мы видим, что раз MH - средняя линия, то AM = MB. Следовательно, в ΔABH HM - медиана. Воспользуюсь особым свойством медианы, проведённо в прямоугольном треугольнике к гипотенузе: она равна половине гипотенузы. Значит, HM = 0.5 * AB = 3. Так решалась эта задача ))

milanmilan8672

1) Разность арифметической прогрессии: d=a_2-a_1=5-2=3. Тогда по формуле n-го члена арифметической прогрессии, найдем четырнадцатый член:

a_{14}=a_1+13d=2+13\cdot3=41


2) Пятый член: b_5=b_1q^4=27\cdot\frac{1}{3^4}=\frac{1}{3}

Сумма четырех первых членов геометрической прогрессии:

S_4=\dfrac{b_1(1-q^4)}{1-q}=\dfrac{27(1-\frac{1}{3^5})}{1-\frac{1}{3}}=\dfrac{121}{3}


3) Знаменатель прогрессии: q=\dfrac{b_2}{b_1}=\dfrac{14}{28}=0.5

Сумма бесконечно убывающей геометрической прогрессии:

S=\dfrac{b_1}{1-q}=\dfrac{28}{1-0.5}=56


4) Здесь в условии опечатка, скорее всего d=-0.5, а если так как есть то задача решения не имеет.

a_n=a_1+(n-1)d\\ 7.3=10.3-0.5(n-1)~~|\cdot 10\\ 73=103-5(n-1)\\ \\ 5(n-1)=103-73\\ 5(n-1)=30\\ n-1=6\\ n=7


ответ: 7


5) 2.5;~ x;~ y;~ 20 - геометрическая прогрессии

b_4=b_1q^3~~\Leftrightarrow~~ q=\sqrt[3]{\dfrac{b_4}{b_1}}=\sqrt[3]{\dfrac{20}{2.5}}=2

x=b_2=b_1q=2.5\cdot2=5\\ y=b_3=b_2q=5\cdot2=10


6) 6; 12; .... ; 96; 102; 108; .... ;198 - последовательность чисел, кратных 6.

Посчитаем сколько таких чисел:

a_1=6;~~ a_n=198\\d=6

a_n=a_1+(n-1)d\\ 198=6+(n-1)6\\ n=33

Сумма первых 33 членов а.п.: S_{33}=\dfrac{a_1+a_{33}}{2}\cdot33=\dfrac{6+198}{2}\cdot33=3366


Нам нужно найти сумму всех натуральных чисел превышающих 100 и меньших 200 , которые кратны 6

, значит найдем сумму не превышающих 100 и отнимем от суммы не превышающих 200


a_1=6;~~ a_n=96\\ d=6\\\ a_n=a_1+(n-1)d\\ 96=6+6(n-1)\\ n=16


S_{16}=\dfrac{6+96}{2}\cdot16=816



Искомая сумма: S=S_{33}-S_{16}=3366-816=2550

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Целое выражение! 5(a-2)(a+2)-1/2(8a-6)+17 !
Ваше имя (никнейм)*
Email*
Комментарий*