Функций y = kx+l и y = x²+bx+c пересекаются в точках А(-4;4) и В(-6;10).
Функция f(x) = kx+l - линейная, она по условию проходит через А и В =>
А(-4;4) ∈ f(x) => { 4 = - 4k+l => l = 4 + 4k (подставим во второе уравнение)
В(-6;10) ∈ f(x) => { 10 = - 6k+l => 10 = - 6k + 4 + 4k
10 - 4 = - 2k
10 - 4 = - 2k
- 2k = 6
k = - 3
Тогда l = 4 + 4*(-3 ) = 4 - 12 = -8
Итак уравнение линейной ф-ции: y = - 3x - 8
Найдем уравнение квадратичной ф-ции:
А(-4;4) ∈ f(x) => {4 = ( -4)²+b*( -4)+c => { 4 = 16 - 4b + c
В(-6;10) ∈ f(x) => {10 = ( -6)²+b*( -6)+c => {10 = 36 - 6b + c (вычтем из второго уравнения первое)
=> 6 = 20 - 2b => 2b = 14 => b = 7
тогда 4 = 16 - 4*7 + c => c = 16
Итак уравнение квадратичной ф-ции: y = x²+7x+16
ответ: b = 7, c = 16, k = - 3, l = -8.
Функций y = kx+l и y = x²+bx+c пересекаются в точках А(-4;4) и В(-6;10).
Функция f(x) = kx+l - линейная, она по условию проходит через А и В =>
А(-4;4) ∈ f(x) => { 4 = - 4k+l => l = 4 + 4k (подставим во второе уравнение)
В(-6;10) ∈ f(x) => { 10 = - 6k+l => 10 = - 6k + 4 + 4k
10 - 4 = - 2k
10 - 4 = - 2k
- 2k = 6
k = - 3
Тогда l = 4 + 4*(-3 ) = 4 - 12 = -8
Итак уравнение линейной ф-ции: y = - 3x - 8
Найдем уравнение квадратичной ф-ции:
А(-4;4) ∈ f(x) => {4 = ( -4)²+b*( -4)+c => { 4 = 16 - 4b + c
В(-6;10) ∈ f(x) => {10 = ( -6)²+b*( -6)+c => {10 = 36 - 6b + c (вычтем из второго уравнения первое)
=> 6 = 20 - 2b => 2b = 14 => b = 7
тогда 4 = 16 - 4*7 + c => c = 16
Итак уравнение квадратичной ф-ции: y = x²+7x+16
ответ: b = 7, c = 16, k = - 3, l = -8.
Поделитесь своими знаниями, ответьте на вопрос:
Функция задана формулой y=-3x+9 найдите: а) значение y при x=3 ; б) при каком значении x значение y=36 ; в) принадлежит ли графику этой функции точка m(20; -51)? подскажите
а) Если х=3, то у= -3•3+9= -9+9=0
б) Если у=36, то
-3х+9=36
-3х=36-9
-3х=27
х=27:(-3)
х= -9
в) Точка М будет принадлежать графику функции, если её координаты будут удовлетворять уравнению. Проверим.
-3•20+9= -51
-60+9= -51
-51= -51 -- верно
М(20; -51) принадлежит графику функции