Валуева
?>

Найти точку пересечения прямой x−1/ 3 = y+3/ 4 = z+5 /−2 и плоскостью 2x − 6y + 4z − 3 = 0.

Алгебра

Ответы

Тресков946
Введём параметр \lambda в канонической уравнении прямой:
    \displaystyle \frac{x-1}{3}= \frac{y+3}{4}= \frac{z+5}{-2} , где \overline{q}\{3;4;-2\} - направляющий вектор.

и тогда можно записать уравнение прямой в параметрической форме:
\displaystyle \begin{cases}
 & \text{ } x=3\lambda+1 \\ 
 & \text{ } y=4\lambda-3 \\ 
 & \text{ } z=-2\lambda-5 
\end{cases}

И подставим эти переменные в заданное уравнение плоскости, получим уравнение относительно \lambda.
2(3\lambda+1)-6(4\lambda-3)+4(-2\lambda-5)-3=0\\ 6\lambda+2-24\lambda+18-8\lambda-20-3=0\\ -26\lambda=3\\ \\ \lambda=- \dfrac{3}{26}

Окончательно имеем точку пересечения прямой и плоскостью 
\displaystyle \displaystyle \begin{cases} & \text{ } x=3\cdot(- \frac{3}{26}) +1 \\ & \text{ } y=4\cdot(-\frac{3}{26})-3 \\ & \text{ } z=-2\cdot(-\frac{3}{26})-5 \end{cases}~~~\Rightarrow\displaystyle \begin{cases} & \text{ } x=\frac{17}{26} \\ & \text{ } y=-\frac{45}{13} \\ & \text{ } z=-\frac{62}{13}\end{cases}

ОТВЕТ:   \bigg(\dfrac{17}{26};-\dfrac{45}{13};-\dfrac{62}{13}\bigg)_.
alena

а)2sin²x-3sinx-2=0

Замена  sinx=t

2t²-3t-2=0

D=3²+4×2×2=25

t₁= 3+√D÷4=3+5÷ 4=8÷4=2

t₂=3-√D÷4=3-5÷4=-2÷4=-0,5

Возвращаемся к замене

sinx=2                                   sinx=-0,5

решения нет                          х=(1)⁻k(cтепень)arcsin(-1\2)+πn,n∈Z

  -1≤sinx ≥1                            x=(1)⁻k × -π\6 +πn,n∈Z

 

4cos²x+4sinx-1=0

 cos²x=1-sin²x

4( 1-sin²x)+4sinx-1=0

4-4sin²x+4sinx-1=0

-4sin²x+4sinx-1+4=0

-4 sin²x+4sinx+3=0      ÷(-1)

4sin²x-4sinx-3=0

Замена sinx=t

4t²-4t-3=0 

D=4²+4×4×3=16+48=64

t₁=4+√D÷8= 4+8÷8=12÷8=1,5

t₂=4-√D÷8=4-8÷8= -4÷8=-0,5

 Возвращаемся к замене

 sinx=1,5                                 sinx=-1\2
решения нет                         х=(1)⁻k(cтепень)arcsin(-1\2)+πn,n∈Z 
  -1≤sinx ≥1                              x=(1)⁻k × -π\6 +πn,n∈Z

 

Васильевич Валерьевна
По определению логарифма  2х>0 ⇒x>0  2x≠1 x≠1/2
                                                 2x-x²>0
                                                 x(2-x)>  2-x>0 ⇒x<2
                                                 2x-x²≠1 т.к ㏒₂ₓ(1)=0, а на 0 делить нельзя
                                                 х²-2х+1=0
                                                 D=4-4=0
                                                  x≠1
x∈(0;1/2)∪(1/2;1)∪(1;2)
                                             

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найти точку пересечения прямой x−1/ 3 = y+3/ 4 = z+5 /−2 и плоскостью 2x − 6y + 4z − 3 = 0.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

azarovaelena19812
igevskoemuseumkec
Gennadevich Aleksandr
volkovaoksana19806037
oksanashabanovadc3197
jnrhjq3597
ldfenix87
superniki87
kol-nat26
juliaipatova1739
filimon131262
yuraotradnov
andreu420082132
universal21vek116
kolgatin69