4
Объяснение:
а)ОДЗ:
{ tan(x) ≥0 (Т.к. подкоренное выражение всегда неотрицательно)
{ cos(x) ≠0 (Т.к. тангенс это синус, делённый на косинус,а на ноль делить нельзя)
Произведение равно нулю,когда хотя бы один из множителей равен нулю
1) 2sin²(x)-3cos(x) = 0
Из основного тригонометрического тождества sin²(x)+cos²(x) = 1 выразим синус
sin²(x) = 1-cos²(x)
2(1-cos²(x))-3cos(x) = 0
2-2cos²(x)-3cos(x) = 0|:(-1)
2cos²(x)+3cos(x)-2 = 0
Пусть cos(x) = t, -1 ≤ t ≤ 1, тогда
2t²+3t-2 = 0
D = 3²-4*2*(-2) = 9+16 = 25 = 5²
Второй корень меньше -1,поэтому мы его рассматривать не будем
Вернёмся к замене
Если t = 0,5, тогда
cos(x) = 0,5
Это равенство распадается на совокупность двух:
[ x = arccos(0,5) + 2пn, n∈Z
[ x = -arccos(0,5) + 2пn, n∈Z
[ x = п/3 + 2пn, n∈Z
[ x = -п/3 + 2пn, n∈Z
Второй корень не подходит по ОДЗ,так что единственное решение этого равенства x = п/3 + 2пn, n∈Z
2)
Дробь равна нулю,когда числитель равен нулю,а знаменатель не равен нулю
{ sin(x) = 0
{ cos(x) ≠ 0
{ х = пn, n∈Z
{ x ≠ п/2 + пn, n∈Z
Пересечений с ОДЗ нет,поэтому наше решение входит в ответ
б) Находим количество решений на отрезке [0;2П] ( см. вложение)
По рисунку мы видим,что у уравнения на данном отрезке 4 корня(0,п/3,п,2п)
Поделитесь своими знаниями, ответьте на вопрос:
Два экскаватора, работая одновременно, могут выкопать котлован за 11 ч 40 минут. если же сначала один экскаватор выкопает самостоятельно 1/4 котлована, а затем второй - оставшуюся часть, то вся работа будет выполнена за 22 ч. за какое время может выкопать этот котлован каждый экскаватор, работая самостоятельно, если известно, что для второго искомое время не меньше, чем 8ч.
Пусть х - производительность 1-го экскаватора; у - 2-го экскаватора; 1 - целый котлован.
Работая одновременно они выроют за 11 часов и ещё 2/3 часа:
Второе уравнение, когда 1-й вырыл 1/4 котлована, а 2-й - 3/4 котлована:
Из второго уравнения выражаем икс:
И подставляем в первое уравнение:
Вычисляем икс:
Отсюда два решения:
1) время рытья котлована одним экскаватором, или первым, или вторым:
2)
В обоих вариантах время работы любого экскаватора не меньше 8 часов. Где ошибка? Проверка показывает, что оба варианта удовлетворяют условию задачи.