Для приведенного квадратного уравнения (т.е. такого, коэффициент при x² в котором равенединице) x² + px + q = 0 сумма корней равна коэффициенту p, взятому с обратным знаком, апроизведение корней равно свободному члену q:
В случае неприведенного квадратного уравнения ax² + bx + c = 0:
x1 + x2 = -b / a x1 · x2 = c / aТеорема Виета хороша тем, что, не зная корней квадратного трехчлена, мы легко можем вычислить их сумму и произведение, то есть простейшие симметричные выражения x1 + x2 и x1 · x2. Так, еще не зная, как вычислить корни уравнения x² – x – 1 = 0, мы, тем не менее, можем сказать, что их сумма должна быть равна 1, апроизведение должно равняться –1.Теорема Виета позволяет угадывать целые корни квадратного трехчлена. Так, находя корни квадратного уравнения x² – 5x + 6 = 0, можно начать с того, чтобы попытаться разложить свободный член (число 6) на два множителя так, чтобы их сумма равнялась бы числу 5. Это разложение очевидно: 6 = 2 · 3, 2 + 3 = 5. Отсюда должно следовать, что числа 2 и 3 являются искомыми корнями.
2. (9x⁴-1,1y)² = ((9x⁴)² - 2*1,1y*9x⁴ + (1,1y)²) = 81x⁸ - 19,8x⁴y + 1,21y²
3. (0,1x + 0,2y)² = ((0,1x)² + 2*0,1x*0,2y + (0,2y)²) = 0,01 + 0,04xy + 0,04y²