24 (км/час) собственная скорость яхты.
Объяснение:
Расстояние между пристанями A и B равно 143 км. Из A в B по течению реки отправился плот, а через 3 часа вслед за ним отправилась яхта, которая, прибыв в пункт B,тотчас повернула обратно и возвратилась в A. К этому времени плот км. Найдите скорость яхты в неподвижной воде, если скорость течения реки равна 2 км/ч. ответ дайте в км/ч.
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - собственная скорость яхты.
х+2 - скорость яхты по течению.
х-2 - скорость яхты против течения.
143/(х+2) - время яхты по течению.
143/(х-2) - время яхты против течения.
Яхта была в пути (30:2)-3=12 (часов), уравнение:
143/(х+2)+143/(х-2)=12
Общий знаменатель (х+2)(х-2), надписываем над числителями дополнительные множители, избавляемся от дроби:
143*(х-2)+143*(х+2)=12*(х+2)(х-2)
143х-286+143х+286=12х²-48
-12х²+286х+48=0/-1
12х²-286х-48=0, квадратное уравнение, ищем корни:
D=b²-4ac = 81796+2304=84100 √D= 290
х₁=(-b-√D)/2a
х₁=(286-290)/24
х₁= -4/24 -1/6, отбрасываем, как отрицательный.
х₂=(-b+√D)/2a
х₂=(286+290)/24
х₂=576/24
х₂=24 (км/час) собственная скорость яхты.
Проверка:
143/26 + 143/22=5,5+6,5=12 (часов), верно.
Поделитесь своими знаниями, ответьте на вопрос:
2изобразите на координатной прямой промежутки 1) (2; 8) 2) (-∞; 6] 3) (-6; 1] 4) (2; +∞) 5) [-7; 0] 6) [-4; +∞) 7) [-2; 4) 8) [-5; 1, 5) 9) (-∞; -5) 10) (-∞; +∞)
2x² + 7x - 4 = 0
Это квадратное уравнение решения много, самый частый -- через дискриминант (D).
Квадратное уравнение в общем виде выглядит так:
где a, b, c -- коэффициенты, a ≠ 0
Формула дискриминанта:
Формула корней:
При этом от дискриминанта зависит количество корней в уравнении:
Если D > 0, то уравнение имеет 2 корня
Если D = 0, то уравнение имеет 1 корень
Если D < 0, то уравнение не имеет корней
Теперь решение:
2x² + 7x - 4 = 0
В нём a = 2, b = 7, c = -4. Подставим эти значения в формулу дискриминанта:
D > 0, значит уравнение имеет 2 корня.
Найдём корень из дискриминанта и корни уравнения: