Пусть на плоскости заданы точка F и прямая , не проходящая через F. Парабола - множество всех тех точек M плоскости, каждая из которых равноудалена от точки F и прямой . Точка F называется фокусом, прямая - директрисой параболы; (OF) - ось, O - вершина, - параметр, - фокус, - фокальный радиус. Каноническое уравнение: Эксцентриситет: Фокальный радиус: Уравнение директрисы: Уравнение касательной в точке Свойство касательной к параболе: (М - точка касания; N - точка пересечения касательной с осью Ox). Уравнение нормали в точке Уравнение диаметра, сопряженного хордам с угловым коэффициентом k: y = p/k. Параметрические уравнения параболы: Полярное уравнение:
Gstoremsk62
26.05.2020
Это не неравенство. Это уравнение. ОДЗ: x^2-5x+6!=0 D=25-24=1 x!=(5+/-1)/2 x!=2; x!=3; (x-1)/2>0 x-1>0 x>1; В итоге ОДЗ: x>1; x!=2; x!=3;