Среднеарифметическое двух чисел всегда меньше большого числа на столько же, насколько оно больше меньшего числа. Ну например для чисел и – среднеарифметическое равно и при этом на меньше двадцати пяти и на больше семнадцати.
Когда Вася отдаёт Пете монет и у них становится поровну, то они как раз и приходят к среднеарифметическому их начальных количеств монет. В итоге у Васи оказывается на монет меньше изначального, а у Пети на монет больше изначального. А значит, вначале у Васи было на монет больше, чем у Пети.
Путь у Васи вначале монет. Тогда у Пети монет.
В первом случае всё как раз получается правильно:
Во втором случае у Васи-II оказывается монет, а у Пети-II будет монет. При этом у Пети-II монет в раз меньше, т.е. если мы количество монет Пети-II мысленно увеличим в раз, то их станет столько же, сколько и у Васи-II. На этом основании составим уравнение:
Далее это целочисленное уравнение можно решить двумя
[[[ 1-ый
Чтобы было целым, целой должен быть и результат деления в дроби, а чтобы было максимальным, частное от деления в дроби должно быть максимальным, а значит её знаменатель должен быть минимальным, целым, положительным числом, что возможно только, когда откуда:
[[[ 2-ой
Чтобы было целым, целой должен быть и результат деления в дроби. А максимальное значение знаменателя в такой дроби (при том, что частное от деления остаётся целым) составляет откуда:
О т в е т :
tvtanya80
26.11.2022
Общее количество вариантов поставить 2 короля на доску равно 63*64=4032 (тк при размещении одного короля на i клетку доски. Другой король должен побывать на остальных 63 возможных позициях. И тд пока первый король не пройдет все 64 позиции. Это и будет общее количество возможных вариантов. Согласно правилам, король не может стоять под шахом другого короля. То есть когда оба короля стоят в соседних клетках по горизонтали вертикали и диагонали. Посчитаем общее количество не соответствующих правилам исходов. Ограничем вокруг поля рамку 8*8 Останется квадратик 6*6 по которому будем перемещать одного из королей сначало по области 6*6. Тогда другой король может стоять около первого на 8 позициях. И так всего клеток черный король пройдет 36. То всего возможных размещений: 36*8=288. Рассмотрим теперь случай, когда черный король будет ходить по рамке 8*8. Но не будет попадать в уголки рамки. То общее число таких клеточек равно: 6*4=24 В данном случае 2 король может находиться с другим королем в 5 позициях,то добавляеться еще 5*24=120 вариантов. И наконец случай когда король будет висеть в углах доски. То у второго короля есть 3 варианта,то есть еще + 3*4=12 вариантов. То всего не благоприятных позиций: 288+120+12=420. Откуда общее число благоприятных вариантов: 4032-420=3612 ответ:3612
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Преобразуйте в многочлен стандартного вида -xt*(x²*t²-xt-3)*p