Рассмотрим первое уравнение:
Можно построить этот график. Учитывая неравенство, строим до прямой x = 6.
Рассмотрим второе уравнение:
График этого уравнения — прямая, проходящая через точку (6; 0) с меняющимся углом наклона. Причём из него же следует, что точку с y = 2 можно выколоть на графике первого уравнения.
График первого уравнения начерчен красным цветом, вариации второго — зелёным.
Возьмём a = 0 и будем увеличивать угол наклона. До a = 1 будет ровно одно пересечение. При a ≥ 1 прямая либо будет параллельна прямой y = x + 2, либо не будет иметь пересечений.
Если уменьшать угол наклона, то при отрицательных a будет два решения, за исключением случаев, когда прямая проходит через выколотую точку (0; 2) и "общую" точку (3; 5):
При (0; 2) При (3; 5)ответ:
Поделитесь своими знаниями, ответьте на вопрос:
Из множества чисел{-2; -1; 0; 1; 2} выделите подмножество состоящее из решений неравенства |2-(1-х)^2|> 1 ! 20
|2-1+2x-x^2|>1
|-x^2+2x+1|>1
1) -x^2+2x+1>1
-x^2+2x+1-1>0
-x^2+2x>0
x^2-2x<0
x(x-2)<0
x= 0 x = 2
Решаем методом интервалов
При x < 0 x(x-2) > 0
При x > 2 x(x-2) > 0
При 0<x<2 x(x-2) < 0 - решение неравенства
2) -x^2+2x+1<-1
-x^2+2x+2<0
x^2-2x-2>0
x = (2+-корень(4-4*1*(-2)/2 = (2+-корень(12)/2 = (2+-2корень(3))/2 =
= 1+- корень из 3
x1 = 1+√3
x2 = 1-√3
Решаем методом интервалов
При 1-√3<x<1+√3 x^2-2x-2<0
При x>1+√3 x^2-2x-2>0 - решение неравенства
При 1-√3<x x^2-2x-2>0 - решение неравенства
3) Объединим решения неравенства:
0<x<2
x>1+√3
1-√3<x
Какие числа нам подходят под подмножество: 1,-1,-2
Пусть M - подмножество, состоящее из решений неравенства.
M = {-2,-1,1}