uzunanna19922488
?>

Известно, что a-b=6, ab=5. найдите значение выражения (a+b)^2

Алгебра

Ответы

sergei-pletenev
Возведем обе части выражения a-b=6 в квадрат;
(a-b)^2=6^2;
a^2-2ab+b^2=36;
a^2+b^2=2ab+36;
a^2+b^2=2*5+36=46;
Теперь найдем значение выражения (a+b)^2;
(a+b)^2=a^2+b^2+2ab=46+2*5=56;
ответ: 56
houseoftorture138
1)a) y = 7x + 8 Область определения- любые значения x, то есть
x э (- бесконечности;+бесконечности)
б) y = 2/(3x + 9) Знаменатель дроби не должен равняться нулю
3x + 9 не равно 0,     x не равен - 3, значит область определения
x э (- бесконечности; - 3) U (- 3; + бесконечности)
в) y = (x + 3)² - область определения любые значения х, то есть
x э (- бесконечности;+бесконечности)
2a) y = 1/(3x² +2x + 3)
3x² + 2x + 3 не должно = 0
3x² + 2x + 3 = 0
D/4 = 1 - 9= - 8
Дискриминант отрицательный, а старший член положительный, значит
3x² + 2x + 3 > 0 при любых х, значит область определения
x э (- бесконечности;+бесконечности)
б) q(x) = 40/(1-x)
1 - x не равно 0 , значит x не равен 1, тогда область определения
x э (- бесконечности; 1) U (1; + бесконечности)
artemy682719

№1.

\tt \displaystyle g(x)=\frac{x-5}{x+3}

\displaystyle g(-2)=\frac{-2-5}{-2+3} =\frac{-7}1 =-7\\ \\ g(2)=\frac{2-5}{2+3} =\frac{-3}{5} ^{(2}=\frac{-6}{10} =-0,\! 6

№2.

\tt \displaystyle f(x)=\frac1{-3x+2}

\displaystyle f(x)=1\Rightarrow \frac1{-3x+2}=1\; \; |\cdot (-3x+2)\ne 0\\ \\ \begin{Bmatrix}1=-3x+2\\ -3x+2\ne 0\end{matrix} \quad \begin{Bmatrix}3x=1\ne 2\\ 3x\ne 2\qquad \end{matrix} \\ \\ x=\frac13

ответ: \tt \displaystyle x=\frac13

№3.

а)

f(x) = 19-2x;   D(f) = (-∞;+∞)

б)

g(x) = x+1;   D(g) = (-∞;+∞)

в)

y(x) = √x;   D(y) = [0;+∞)

г)

y = x²-4;   D(y) = (-∞;+∞)

Область определения линейных функций (пункты а и б) и квадратных (пункт г) ничто не ограничивает. А вот для квадратного корня есть ограничения - подкоренное выражение не может быть отрицательным (в пункте в) x ≥ 0).

№4.

а)

y = 37x+1;   E(y)=(-∞;+∞)

б)

y = -23;   E(y) = -23

в)

y = x;   E(y) = (-∞;+∞)

г)

y = |x|;   E(y) = [0;+∞)

Для линейной функция вида y=kx+b, k≠0, множество значений все действительные числа (пункты а и в). Для линейной функции вида y=b, b - константа, множество значений и есть число b, оно неизменно (пункт б). Множество значений модуля, все неотрицательные числа (пункт г).

ответы на вопросы:

1. Графиком квадратичной функции является парабола.

2. Привести функцию к виду f(x) = ax²+bx+c, абсцисса вершины: \tt \displaystyle x_0 =\frac{-b}{2a}, ордината вершины: y₀ = f(x₀) - надо подставить значение x₀ в квадратичную функцию.

3. Направление ветвей зависит от старшего коэффициента.

Если a<0, то ветви направлены вниз;

Если a>0, то ветви направлены вверх.

4. Да, любая парабола имеет ось симметрии, для графика функции y=ax²+bx+c, ось симметрии будет \tt \displaystyle x =\frac{-b}{2a}

5. Определяем координаты вершины парабола и направление ветвей. Если вершина ниже оси Ox, а ветви направлены вниз ИЛИ вершина выше оси Ox, а ветви направлены вверх, то искать нули функции (x, при которых график функции пересекает ось Ox) не надо. В остальных двух случаях, находим нули функции.

Составляем таблицу точек, для таких x, что не очень далеко от абсциссы вершины. И заодно находим координаты точки пересечения графика с осью Oy (x=0).

Отмечаем точки из таблицы и вершину на координатной плоскости и проводим параболы, подписываем координаты точек пересечения графика с ось Ox.


Решите по , 9 класс. большое! ) номер 1. найдите g (-2) b g (2), если g (x)= x-5\x+3 номер 2. найдит

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Известно, что a-b=6, ab=5. найдите значение выражения (a+b)^2
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

kuhonka2021
antrotip
bryzgalovag
brovkinay
stailwomen31
kotikdmytriy11
Stepan Rastorgueva850
Lyalikova
Елена Надыч524
bulk91675
Butsan-Bagramyan
Kochinev7
Avdeeva Inga1505
alvs9
om805633748