mereninka7008
?>

Три числа образуют возрастающую арифметическую прогрессию, а их квадраты составляют прогрессию. найдите эти числа, если их сумма равна 36.

Алгебра

Ответы

svetarakityanskaya
Пусть х; у; z последовательные члены арифметической прогрессии (х<уПо условию х+у+z=36 (1);
по свойству арифметической прогрессии:
у=(х+z)/2;
x+z=2*у (2);
подставим (2) в (1):
2*у+у=36;
у=12;
подставим у=12 в (1):
x+z+12=36;
x+z=24 (3);
по условию:
x^2; у^2; z^2 геометрическая последовательность;
по свойству геометрической прогрессии:
(у^2)^2=х^2 * z^2;
144^2=х^2 * z^2 (4);
из (3) выразим x и подставим в (4):
х=24-z;
(24-z)^2*z^2=144^2;
1) (24-z)*z=144;
z^2-24*z+144=0;
D=24^2-4*144=0;
z=24/2=12 не подходит, так как по условию z>у;
2) (24-z)*z=-144;
z^2-24*z-144=0;
D=24^2-4*(-144)=1152;
z1=(24+√1152)/2=(24+24*√2)/2=12+12*√2;
z2=(24-√1152)/2=(24-24*√2)=12-12*√2;
z1>у; z2<у; значит, z=12+12*√2;
итак: х=12-12*√2; у=12; z=12+12*√2;
ответ: 12-12*√2; 12; 12+12*√2
juli19657
Все равные цифры такого числа стоят рядом (между ними нет других цифр), так как иначе есть пара соседних цифр, левая из которых больше правой (так как она должна быть не меньше левой, которая равна правой).

Цифры 0 быть не может (иначе она должна была бы стоять первой, так как меньше остальных чисел, но число с 0 начинаться не может, как не может и быть "хорошей" цифра 0, если она есть в числе).

Цифры 9 также быть не может (так как она хорошая, то их в числе ровно 9, но число 8-значное, то есть 9 в числе больше, чем цифр. Противоречие)

Такое число состоит из следующих групп:
1, 22, 333, 4444, 55555, 666666, 7777777, 88888888
(так как одинаковые цифры стоят подряд, и цифра A встречается ровно A раз). Причем каждая из групп встречается в числе не более 1 раза.

Если есть 8, то число единственное: 88888888
Если есть 7, то есть группа из 7 семерок, остается 1 незанятая позиция, а группа занять ровно 1 место. Значит такое число также единственное: 17777777
Если есть 6, то остается 2 незанятых позиции. Туда помещаются только 2 группы: 1 и 22. Но если поместить 1, то останется только одна позиция, а поместить туда нечего. Поэтому здесь тоже только одно число: 22666666
Если есть 5, то осталось 4 позиции. Действуя по аналогии с предыдущими рассуждениями, подходят только 33355555 и 12255555 (остается 3 позиции, их можно занять только группой из всех троек, либо есть 2, а значит можно поместить только 1. Если нет ни 3, ни 2, то остается группа 1 и  3 позиции. Занять не получится)
Если ни одной из вышеперечисленных цифр нет, но есть 4, то остается 5 позиций, на которые цифры можно разместить единственным
13334444 (если есть 3, то точно есть 1, если нет 3, то разместить нельзя, т.к. можно занять лишь 3 позиции)
Если нет цифр, больших 3, то занять можно лишь 6 позиций, то есть подходящих чисел больше нет.

Итого 6 чисел:
88888888, 17777777, 22666666, 33355555, 12255555, 13334444
zipylin

Пусть за  х минут первый рабочий делает одну деталь, тогда второй рабочий за (х+6) минут делает одну деталь.

7 часов = 420 минут

420/х деталей делает первый рабочий

420/(х+6) деталей делает второй рабочий

420/х-420/(х+6)=8

Решим данное уравнение:

 

 

 

 

При х не равно 0 и -6, решим уравнение:

420(x+6)-420x-8x(x+6)=0

420х+2520-420х-8х^2-48х=0

-8х^2-48x+2520=0

Решением данного уравнения являются х=-21 и х=15

Число деталей является положительной величиной, поэтому

х=15 минут - одну деталь делает первый рабочий,

тогда второй рабочий одну деталь за 21 минуту.

420/15=28 деталей делает первый рабочий

420/21=20 деталей делает второй рабочий.

ответ. 28 деталей и 20 деталей

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Три числа образуют возрастающую арифметическую прогрессию, а их квадраты составляют прогрессию. найдите эти числа, если их сумма равна 36.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

mishanay301csfp
kon200182
yakovlevasvetlanalvovna209
Решите уравнение: 8y(y-1)+4y(3-2y)-5=6y+1
Kolosove5465
fab2004
serebrennikova99
abakas235
superniki87
happygal5224
Хабарьева Андрей1056
Stepan Rastorgueva850
verkop9
kseniyavaganova
ognevasv555
Бондарев-Исаханян