Pochkun-Oleg
?>

Разложите на множители 36с^2-25 надо

Алгебра

Ответы

sleek73

36c^2-25=(6c)^2-5^2=(6c-5)(6c+5)

natalyaionova

36c {}^{2} - 25 \\ \\ 6 {}^{2} c {}^{2} - 5 {}^{2} \\ \\ (6c - 5) \times (6c + 5)

~•~•~•ZLOY_TIGROVSKIY~•~•~•
lyukiss
Скорость первого рабочего v₁ деталей в минуту
Скорость второго рабочего v₂ деталей в минуту
Пусть в партии S деталей.
Тогда
(S-15)/v₁=S/(2v₂) - время, за которое 2-й сделал половину партии.
S/v₁=(S-8)/v₂ - время, за которое 1-ый сделал всю партию.
Если х - искомое количество деталей, то
(S-x)/v₂=S/(2v₁) - время, за которое 1-ый сделал половину партии.
Отсюда x=S(1-v₂/(2v₁)).
Из 1-го и 2-го уравнений получим
v₁/v₂=S/(S-8) и v₁/v₂=2(S-15)/S, т.е.
S^2=2(S-8)(S-15).
Решаем это квадратное уравнение, получаем корни 6 и 40.
6 не подходит, т.к. количество деталей больше 6.
Значит S=40, откуда v₁/v₂=40/(40-8)=5/4, откуда x=40*(1-4/10)=24.
ответ: 24 детали.
Филипп1054
Классическое решение делается в двух основных частях:

1) Поиск ОДЗ – область допустимых значений.
2) Решение уравнения.

Немного о первом.
Все семь основных арифметических действий + , - , \cdot , : , x^n , \sqrt[n]{x} и \log_a{x} – имеют ОДНОЗНАЧНЫЙ результат. Вы, возможно знаете пока не все из них, но это не меняет ничего в рассуждениях. Однозначность действия означает, что при вычислении результата любого из них получается однозначный ответ. Ну, например, ведь нет такого, что у одного при вычислении 3 + 5 = 8 , а у другого 3 + 5 = 7 :–) ?! Конечно же, нет, это бы вызывало полную неразбериху и ни в одной науке ничего нельзя было бы вычислить ни по одной формуле. Но иногда, при изучении квадратного корня, учащиеся понимают это действие не совсем корректно, полагая, что \sqrt{4} = 2 , но одновременно с тем как бы и \sqrt{4} = - 2 . Это ошибка! Так понимать действие корня нельзя. Любой калькулятор покажет именно \sqrt{4} = 2 , и это и есть верный результат вычислений, поскольку он единственный, так как любое арифметическое действие должно давать ОДНОЗНАЧНЫЙ результат.

Происхождение такого недоразумения вполне объяснимо. Это происходит из созвучности понятий «квадратный арифметический корень» и «корни нелинейного уравнения». Выше мы говорили именно о «квадратном арифметическом корне», и об однозначности этого арифметического действия, а что такое «корни нелинейного уравнения» можно проиллюстрировать на таком примере, как x^2 = 4 . Корни этого нелинейного уравнения, как легко понять: x_1 = -2 и x_2 = 2 или в короткой записи x = \pm 2 , что равносильно x = \pm \sqrt{4} , где сам «арифметический квадратный корень» \sqrt{4} – это именно ПОЛОЖИТЕЛЬНОЕ число, а уж перед ним ставятся разные знаки, чтобы показать, что «корнями этого нелинейного уравнения» являются и само значение «квадратного арифметического корня» и число, противоположное ему. Аналогично, например, для уравнения: x^2 = 7 . Корни этого нелинейного уравнения, как легко понять: x = \pm \sqrt{7} , где сам «арифметический квадратный корень» \sqrt{7}– это именно ПОЛОЖИТЕЛЬНОЕ число, а уж перед ним ставятся разные знаки, чтобы показать, что «корнями этого нелинейного уравнения» являются и само значение «квадратного арифметического корня» и число, противоположное ему.

Значит при поиске ОДЗ (область допустимых значений) нужно всегда учитывать, что подкоренное выражение (всё то, что стоит под знаком корня) во-первых: должно быть неотрицательным, потому что иначе нельзя извлечь корень, а во-вторых: результат вычисления самого арифметического квадратного корня должен быть равен тоже неотрицательному числу, по причинам, которые были подробно описаны в предыдущем абзаце. Есть ещё несколько простых принципов, по которым выстраивается логика ОДЗ, но в данной задаче они не нужны, так что не будем все их перечислять. А теперь решим задачу классическим

Р Е Ш Е Н И Е :

\sqrt{ x + 4 } - x + 2 = 0 ;

\sqrt{ x + 4 } = x - 2 ;

1. ОДЗ:

\left\{\begin{array}{l} x + 4 \geq 0 ; \\ x - 2 \geq 0 . \end{array}\right

\left\{\begin{array}{l} x \geq -4 ; \\ x \geq 2 . \end{array}\right

x \in [ 2 ; +\infty ] ;

2. Решение уравнения:

( \sqrt{ x + 4 } )^2 = ( x - 2 )^2 ;

x + 4 = x^2 - 2 \cdot x \cdot 2 + 2^2 ;

x + 4 = x^2 - 4x + 4 ;

x^2 - 5x = 0 ;

x ( x - 5 ) = 0 ;

x_1 = 0 ,       это не соответствует ОДЗ, поскольку x_1 = 0 \notin [ 2 ; +\infty ] ;

x_2 = 5 ,       что соответствует ОДЗ, поскольку x_2 = 5 \in [ 2 ; +\infty ] ;

О Т В Е Т : x = 5 .

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Разложите на множители 36с^2-25 надо
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

ВалентиновичСуриковна1104
mac4roc3781
ИП_Рамис873
Busyashaa
krisrespect2
GoncharenkoKuzmin
domtorgvl20082841
Реши неравенство 8a/17<3.
Olifirenko119
derkachn6429
Vladimirovich1898
anaissite6
kruttorg
alexfold
skalegin68
andyrvo