Нужно воспользоваться формулой разности квадратов практически во всех примерах: (a - b)(a + b) = a² - b².
Выполните умножение:
1) 5b(b - 1)(b + 1) = 5b(b² - 1) = 5b³ - 5b;
2) (c + 2)(c - 2) · 8c² = (c² - 4) · 8c² = 8c⁴ - 32c²;
3) (m - 10)(m² + 100)(m + 10) = (m - 10)(m + 10)(m² + 100) =
= (m² - 100)(m² + 100) = m⁴ - 10 000;
4) (a² + 1)(a² - 1)(a⁴ + 1) = (a⁴ - 1)(a⁴ + 1) = a⁸ - 1;
Упростите выражение:
1) (x + 1)(x - 1) - (x + 5)(x - 5) + (x + 1)(x - 5) = x² - 1 - (x² - 25) + x² - 5x + x - 5 = x² - 1 - x² + 25 + x² - 4x - 5 = x² - 4x + 19;
2) 81a⁸ - (3a² - b³)(9a⁴ + b⁶)(3a² + b³) = 81a⁸ - (3a² - b³)(3a² + b³)(9a⁴ + b⁶) = 81a⁸ - (9a⁴ - b⁶)(9a⁴ + b⁶) = 81a⁸ - (81a⁸ - b¹²) = 81a⁸ - 81a⁸ + b¹² = b¹².
Поделитесь своими знаниями, ответьте на вопрос:
Сконтрольной работой! 1. вычислить: 12 / π × arcsin(1 / 2) – 3 / π × arctg(√3) 2. решить уравнение: cos(π/2-2x)=√2/2 3. найти максимум функции: y(x)=1/2x в четвёртой степени+x³-x²+3
1. Вычислить: 12 / π × arcsin(1 / 2) – 3 / π × arctg(√3) =
= 12/π * (π/6) - 3/π * (π/3) = 2 - 1 = 1
2. Решить уравнение: cos(π/2-2x)=√2/2
2x - π/2 = +-arccos(√2/2) + 2πk, k ∈ Z
2x = +-(π/4) + π/2 + 2πk, k ∈ Z
2x = +-(π/8) + π/4 + πk, k ∈ Z
3. Найти максимум функции: y(x)=1/2x⁴ + x³ - x² + 3
Находим первую производную функции:
y' = 2x³ + 3x² - 2x
или
y' = x(2x² + 3x - 2)
Приравниваем ее к нулю:
x(2x² + 3x - 2) = 0
x₁ = 0
2x² + 3x - 2 = 0
D = 9 + 4*2*2 = 25
x₂ = (-3 - 5)/4 = - 2
x₃ = (- 3 + 5)/4 = 1/2
Вычисляем значения функции
f(1/2) = (1/2)*(1/2)⁴ + (1/2)³ - (1/2)² + 3 = 1/32 + 1/8 - 1/4 + 3 = 93/32
f(0) = 3
f(-2) = (1/2) * (-2)⁴ + (- 2)³ - (-2)² + 3 = 8 - 8 - 4 + 3 = -1
ответ: fmin = -1, fmax = 3
Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную:
y'' = 6x² + 6x - 2
Вычисляем:
y''(0) = - 2 < 0 - значит точка x = 0 точка максимума функции.
y''(-2) = 6*(-2)² + 6*(-2) - 2= 24 - 12 - 2 = 10 > 0 - значит точка x = - 2 точка минимума функции.