hadzievamareta44
?>

Сконтрольной работой! 1. вычислить: 12 / π × arcsin(1 / 2) – 3 / π × arctg(√3) 2. решить уравнение: cos(π/2-2x)=√2/2 3. найти максимум функции: y(x)=1/2x в четвёртой степени+x³-x²+3

Алгебра

Ответы

sergeevna
Решение
1. Вычислить: 12 / π × arcsin(1 / 2) – 3 / π × arctg(√3) = 
= 12/π * (π/6) - 3/π * (π/3) = 2 - 1 = 1

2. Решить уравнение: cos(π/2-2x)=√2/2
2x - π/2 = +-arccos(√2/2) + 2πk, k ∈ Z
 2x = +-(π/4) + π/2 + 2πk, k ∈ Z
2x = +-(π/8) + π/4 + πk, k ∈ Z

3. Найти максимум функции: y(x)=1/2x⁴ + x³ - x² + 3
Находим первую производную функции:
y' = 2x³ + 3x² - 2x
или
y' = x(2x² + 3x - 2)
Приравниваем ее к нулю:
x(2x² + 3x - 2) = 0
x₁ = 0
2x² + 3x - 2 = 0
D = 9 + 4*2*2 = 25
x₂ = (-3 - 5)/4 = - 2
x₃ = (- 3 + 5)/4 = 1/2
Вычисляем значения функции 
f(1/2) = (1/2)*(1/2)⁴ + (1/2)³ - (1/2)² + 3 = 1/32 + 1/8 - 1/4 + 3 = 93/32
f(0) = 3
f(-2) =  (1/2) * (-2)⁴ + (- 2)³ - (-2)²  + 3 = 8 - 8 - 4 + 3 = -1
ответ: fmin = -1, fmax = 3
Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную:
y'' = 6x² + 6x - 2
Вычисляем:
y''(0) = - 2 < 0 - значит точка x = 0 точка максимума функции.
y''(-2) = 6*(-2)² + 6*(-2)  - 2= 24 - 12 - 2 = 10 > 0 - значит точка x = - 2 точка минимума функции.
Шиморянов Мария1866

Нужно воспользоваться формулой разности квадратов практически во всех примерах: (a - b)(a + b) = a² - b².

Выполните умножение:

1) 5b(b - 1)(b + 1) = 5b(b² - 1) = 5b³ - 5b;

2) (c + 2)(c - 2) · 8c² = (c² - 4) · 8c² = 8c⁴ - 32c²;

3) (m - 10)(m² + 100)(m + 10) =  (m - 10)(m + 10)(m² + 100) =

    = (m² - 100)(m² + 100) = m⁴ - 10 000;

4) (a² + 1)(a² - 1)(a⁴ + 1) = (a⁴ - 1)(a⁴ + 1) = a⁸ - 1;

Упростите выражение:

1) (x + 1)(x - 1) - (x + 5)(x - 5) + (x + 1)(x - 5) = x² - 1 - (x² - 25) + x² - 5x + x - 5 = x² - 1 - x² + 25 + x² - 4x - 5 = x² - 4x + 19;

2) 81a⁸ - (3a² - b³)(9a⁴ + b⁶)(3a² + b³) = 81a⁸ - (3a² - b³)(3a² + b³)(9a⁴ + b⁶) = 81a⁸ - (9a⁴ - b⁶)(9a⁴ + b⁶) = 81a⁸ - (81a⁸ - b¹²) = 81a⁸ - 81a⁸ + b¹² = b¹².

Ахмедшина Трубников1249
Log(16;3x-1)<2
(log16;3x-1)=2
(3x-1)^2=16
x1=-1
x2=5/3
проверяем корни под условия 3x-1>0 и 3x-1≠1
под них подходит только корень x=5/3
рассмотрим 2 случая
I)0<3x-1<1
1<3x<2
1/3<x<2/3
в этот промежуток наш корень x=5/3 не входит, значит, функция y=log(16;3x-1)-2 на этом промежутке знакопостоянна. Остается определить этот знак. Для этого возьмём x=0.4, который входит в промежуток 1/3<x<2/3 и найдем для него знак функции. log(16;0.2)-2<0, т.к. log(16;0.2) тоже отрицательно, значит, промежуток (1/3;2/3) является решением исходного неравенства
II)3x-1>1
3x>2
x>2/3
т.к. корень функции y=log(16;3x-1)-2 ( x=5/3) входит в этот промежуток, то функция у нас принимает и положительный, и отрицательный знак. нам надо найти, при каких значениях отрицательный знак, так как мы решаем неравенство log(16;3x-1)-2<0
для этого возьмём x=17/3 и получим log(16;17*3/3-1)-2=-1, а т.к. 17/3>5/3 и при 17/3 функция принимает отрицательный знак, то и при любом x>5/3 функция принимает отрицательный знак, значит, решение (5/3;+∞) нам тоже подходит
ответ:1/3<x<2/3; x>5/3

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Сконтрольной работой! 1. вычислить: 12 / π × arcsin(1 / 2) – 3 / π × arctg(√3) 2. решить уравнение: cos(π/2-2x)=√2/2 3. найти максимум функции: y(x)=1/2x в четвёртой степени+x³-x²+3
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Natella-874535
Сергей_Евгеньевич1255
васильевич
egorov
cholga69
Golubitskaya378
sklad
fotomuha1
olyavoznyak
Vladimirovna1370
hacker-xx1
banketvoshod
ktripoleva294
Pavlovna897
baulinanatalia7201