Если под корнем только Х то он может быть только больше либо равен нулю и при деление знаменатель не равен нулю следовател но строго больше 0
Dmitrievna405
21.04.2021
1). (х2+1)2-15=0 х4+1+2х2-15=0 х4+2х2-14=0 х2=t t2+2t-14=0 D=4+4*14=4+56=60 t1=(-2-корень из 60)/2=(-2-корень из 15*4)/2=(-2-2*корень из 15)/2= -2(1+корень из 15)/2=-(1+корень из 15)=-1-корень из 15. t2=(-2+корень из 60)/2=все тоже самое, что и в t1= -2(1-корень из 15)/2=-(1-корень из 15)=корень из 15-1. Теперь подставляем t в х2. Получаем: х2=-1-корень из 15 или х2=корень из 15-1 вот. я подставила. а дальше тут нужно немного преобразовать. я не знаю как, извини)) 2). а с этим примером я вам точно (2х)2+2=0 4х2+2=0 4х2=-2 х2=-2:4 х2=-1/2 тут вроде решений нету, т.к. корня из отрицательного числа не существует. Ну как-то так. вроде)
Vyacheslavovna240
21.04.2021
(a + b)² = a² + 2ab + b² — формула квадрата суммы; (a — b)² = a² — 2ab + b² — соответственно, формула квадрата разности.
9x² + 24xy + 16y² Солдаты-квадраты (9x² и 16y²), как называет их мой учитель, стоят на своих местах, а в середине многочлена — их удвоенное произведение (2 × 3x × 4y); значит, смело можно утверждать, что перед нами квадрат суммы 3x и 4y, записывающийся так: (3x + 4y)², или, раскладывая на множители, (3x + 4y)(3x + 4y).
Проверка: (3x + 4y)(3x + 4y) = 9x² + 12xy + 12xy + 16y² = 9x² + 24xy + 16y². Мы получили то же выражение. Значит, мы всё решили правильно.
169 — (m + 11) = 169 — m — 11... И всё же я полагаю, что в данном выражении (m + 11) берут в квадрат, а не как ты написал. 169 — (m + 11)² = 13² — (m + 11)² = (13 — m — 11)(13 + m + 11) = (2 — m)(24 + m)