evainvest1
?>

Маємо 8 деталей з яких 5 стандартних.беруть навмання дві деталі.знайти ймовірність того, що принаймі одна з узятих деталей буде стандартною?

Алгебра

Ответы

a96849926288
Два варианта решения - выбирай любой =) более классический первый вариант
Вероятность того что одна деталь будет нужной P₁ равна :
 1 минус вероятность что ни одна не попадет нужная P₂
Вычисляем P₂
1й выбор 3 нестандарт из 8 P₃ = 3/8
2й независимый и также P₃ = 3/8
Вероятность 2х выборов P₂ = P₃*P₃ = (3/8)² = 9/64
Теперь найдем нужную вероятность 1 - 9/64 = 55/64

2й решения
Если 1й раз выбрали нужную с вероятностью 5/8 то второй выбор неважен, значит первая часть равна 5/8
Иначе 1й раз выбрали не нужную 3/8, тогда 2й раз над выбрать нужную 5/8 и получаем 3/8 * 5/8 = 15/64
Общая вероятность равна сумме 5/8 + 15/64 = (40+15)/64 = 55/64
galereyaas1568
||x-2|-3x|=2x+2
Подмодульная функция x-2 преобразуется в нуль в точке x=2. При меньших значениях за 2 она отрицательная и положительная для x>2. На основе этого раскрываем внутренний модуль и рассматриваем равенство на каждом из интервалов.
при x∈(-∞;2) x-2<0 и |-x+2-3x|=2x+2⇒|2-4x|=2x+2
Подмодульная функция равна нулю в точке x=1/2. При меньших значениях она знакоположительная, при больших – отрицательная. Раскроем модуль для x<1/2
 2-4x=2x+2⇒6x=0⇒x=0∈(-∞;1/2)
Следующим шагом раскрываем модуль на интервале (1/2;2)
-2+4x=2x+2⇒2x=4⇒x=2∉(1/2;2)
Раскроем внутренний модуль для x>2
|x-2-3x|=2x+2⇒|-2-2x|=2x+2
Подмодульная функция  положительная при x<-1 и отрицательная при x>-1
раскрываем модуль на интервале (2;∞)
2+2x=2x+2⇒x∈(2;∞)
итак, х∈{0;(2;∞)}
.
:) решите уравнение: ||х-2|-3х|=2х+2
olgavbaranova
Сначала вырази  синусы данных углов через синус углов из первой четверти:
sin (–55°) = –sin 55°,
потом sin 600° = sin (240° + 360°) = sin 240° = sin (180° + 60°) =
 =–sin 60°,
sin 1295° = sin (215° + 3*360°) = sin 215° = sin (180° + 35°) = –sin 35°.
И так как углы 55°, 60° и 35° принадлежат первой четверти, в которой большему углу соответствует больший синус,
то sin 35° < sin 55° < sin 60°.
Но тогда –sin 35° > –sin 55° > –sin 60°,
а поэтому sin 1295° > sin (–55°) > sin 600°.
ответ:sin 600°, sin (–55°), 1295°

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Маємо 8 деталей з яких 5 стандартних.беруть навмання дві деталі.знайти ймовірність того, що принаймі одна з узятих деталей буде стандартною?
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Александровна
Тинчурина1528
kuchino09
Deniskotvitsky6422
Pogosyan Nataliya
михаил
Агибалов428
kryukovaem
Volkov
kareeva
korj8
Nikita
Deniskotvitsky6422
kolgatin69