Т.к один корень известен, то можно вынести (2х+1): (2х+1)(х^4-6х^2+9)=0, не сложно заметить, что правая часть уравнения-является квадратом: (2х+1)(х^2-3)^2=0, тогда х^2-3=0=> х= плюс и минус корень из 3
nelli-bi6
03.12.2020
Запишем, какие числа удовлетворяют условию задачи: 11, 13, 15, ..., 99 - двузначные натуральные нечетные Найдем их общее количество: последовательность является арифметической прогрессией, где:
Условию будут удовлетворять числа: 91, 93, 95, 97, 99 (5 шт.) Вероятность: в) Если х=9, то у=9 Если х=8, то у=9 Получаем числа: 99, 89 (2 шт.) Вероятность: г) Если х=1, то у=1; 3 Если х=2, то у=1 Если х=3, то у=1 Числа: 11, 13, 21, 31 (4 шт.) Вероятность:
mileva84
03.12.2020
Буду делать поэтапно: 1) =((n+7)²-(n-7)²)((n+7)²+(n-7)²)=[(n+7-(n-7_)(n+7+n-7)]*[n²+14n+49+n²-14n+49]=14*2n(2n²+98)=48n*2(n²+49)=56n(n²+49) полученное выражение кратно 56, т.к. 56 делится на 56 без остатка 2) a) (56b-7a)/(9a²-72ab)=7(8b-a)/9a(a-8b)=-7(a-8b)/9a(a-8b)=-7/9a
а во 2 номере под буквой б) как мне кажется вместо 40, должно стоять 4 и тогда решение следующее: [(x+4)³+(x-4)³]/x(x²+48)=[(x+4+x-4)((x+4)²-(x+4)(x-4)+(x-4)²)]/x(x²+48)=[x²(x²+8x+16-x²+16+x²-8x+16)]/x(x²+48)=x²(x²+48)/x(x²+48)=x
в) если бы в числителе и знаменателе была бы одна и та же переменная, то это решалось бы так: = [(b-2)*(b^4+2b^3+4b^2+8b+16)]/(b^4+2b^3+4b^2+8b+16)=b-2
3) при n=6 данное выражение является целым числом, т.к число будет целым в случае, когда в знаменателе 1, а это тогда , когда n-5 =1⇒ n=6
4) a) = [(3x-x)/(3x-y)]-[2xy/(9x²-y²)]=[(3x-x)(3x+y)-2xy]/(9x²-y²)=(9x²+pxy-3x²-xy-2xy)/(9x²-y²)=6x²/(9x²-y²) б) =[9-6a-(a-3)²]/(a³-27)=(9-6a-a²+6a-9)/(a³-27)=-a²/(a³-27)
ну а тождество , надеюсь уж сам решишь?
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Решить уравнение, если известен один его корень: 2х^5-х^4-12х^3+6х^2+18х-9=0 корень - 1/2