NurlanAleksandrovich
?>

Тригонометрия. 1. представьте в виде произведения выражение: 1) 1+соs6a 2) 1-cosa/4 3) 1+cos100° 4) 1+cos5a/2 5)1-sina/2 6)1+sinп/10 2. понизьте степень выражения: 1) cos^2(a/2+ф) 2)sin^2(п/10-в)

Алгебра

Ответы

Бисеров-Чистякова

task/29945456  

Представить в виде произведения :

* * * cosα= cos(2*α/2)=cos²(α/2) - sin²(α/2) =2cos²(α/2) - 1 ⇒cos²(α/2)=(1+cosα)/2 * * *  

* * * cosα= cos(2*α/2)=cos²(α/2)- sin²(α/2) =1 -2sin²(α/2) ⇒sin²(α/2)=(1+cosα)/2 * * *

1) 1+ cos6α =2cos²3α   * * * 2cos3α* cos3α * * *

2) 1 - cos(α /4) =2sin²(α/8)

3) 1+cos100°  =2cos²50°

4) 1 + cos(5α/2) =2cos²(5α/4)

5) 1 -  sin(α/2) = 1 - cos(π/2 - α/2) =2sin²( (π/2 - α/2) /2 ) = 2sin² ( π/4 - α/4 ) .

6) 1+ sin(π/10) = 1 +cos(π/2 - π/10 ) = 1+cos(2π/5)  =2cos² (π/5) .

2. Понизить степень выражения :

1) cos² (α/2 +φ)   = ( 1+cos2(α/2 +φ) ) / 2 = ( 1+cos(α +2φ) ) / 2

2) sin² (π/10 - β) =( 1 -cos2(π/10 - β) ) / 2 = ( 1 -cos(π/5 - 2β) ) / 2

ivstigres65

По определению, \left\{\underset{n\rightarrow\infty}{lim}x_n=L\right\}\Leftrightarrow\forall\varepsilon 0 \ \exists N: \ \forall n\geq N\rightarrow\left|x_n-L\right|

Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение \left\{\underset{n\rightarrow\infty}{lim}x_n=0\right\}\Leftrightarrow\forall\varepsilon 0 \ \exists N: \ \forall n\geq N\rightarrow\left|x_n\right|

2) x_n=\dfrac{a}{n}

|x_n|

А значит, если взять N=\left[\dfrac{|a|}{\varepsilon}\right] +1 (*), \forall\;n\geq N\to |x_n|. И правда: \dfrac{|a|}{\varepsilon}

(*) Очевидно, что для любого допустимого значения \varepsilon выражение \left[\dfrac{|a|}{\varepsilon}\right] +1 определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)

А это и означает, что предел данной последовательности равен 0

4)  x_n=\dfrac{2+(-1)^n}{n}

|x_n|

|2+(-1)^n|=\left\{\begin{array}{c}2-1=1,n=2k-1,k\in N \\2+1=3,n=2k,k\in N \end{array}\right. \Rightarrow |2+(-1)^n|\leq 3\; \forall n\in N

А значит, если взять N=\left[\dfrac{3}{\varepsilon}\right] +1 (**), \forall\;n\geq N\to |x_n|. И правда: \dfrac{|2+(-1)^n|}{\varepsilon}\leq\dfrac{3}{\varepsilon}< \left[\dfrac{3}{\varepsilon}\right] +1=N\leq n \Rightarrow \dfrac{|2+(-1)^n|}{\varepsilon}< n \Rightarrow |x_n|

(**) Очевидно, что для любого допустимого значения \varepsilon выражение \left[\dfrac{3}{\varepsilon}\right] +1 определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)

А это и означает, что предел данной последовательности равен 0

___________________________

2) a=1. Тогда x_1=\dfrac{1}{1}=1; x_2=\dfrac{1}{2}; x_3=\dfrac{1}{3}; x_4=\dfrac{1}{4}; x_5=\dfrac{1}{5}; x_6=\dfrac{1}{6}

4)

x_1=\dfrac{2+(-1)^1}{1}=1;\;x_2=\dfrac{2+(-1)^2}{2}=1\dfrac{1}{2};\;x_3=\dfrac{2+(-1)^3}{3}=\dfrac{1}{3};\;x_4=\dfrac{2+(-1)^4}{4}=\dfrac{3}{4};\;x_5=\dfrac{2+(-1)^5}{5}=\dfrac{1}{5};\;x_6=\dfrac{2+(-1)^6}{6}=\dfrac{1}{2}.

___________________________

Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x. 0\leq \{x\}


пример 2 и 4. Все теоремы и аксиомы, будьте добры, распишите. Действий, пусть и банальных, легких не
tanyatanyat
Тут нужно решать интервальным методом, показать здесь я это не могу. Но для начала нужно найти нули функции(значения х, при котором функция была бы равна нулю). Здесь нули ф.: 4;-3,5. Затем чертим ось ох, обозначаем эти точки и участки, где функция положительна или отрицательна. В итоге получаем, что функция <0 при х принадлежащем отрезку (-3,5;4) 2 решается точно так же, но тут для удобства нужно в 1 скобуе поменять местами числа, затем вынести за скобки -1 и умножить обе части неравенства на -1(при этом знак> меняется на знак <). Вот что получается (х-2)(х+1)<0. Нули функции: 2;-1. Дальше как я уже объяснял выше. ответ: при х принадлежащем отрезку (-1;2)

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Тригонометрия. 1. представьте в виде произведения выражение: 1) 1+соs6a 2) 1-cosa/4 3) 1+cos100° 4) 1+cos5a/2 5)1-sina/2 6)1+sinп/10 2. понизьте степень выражения: 1) cos^2(a/2+ф) 2)sin^2(п/10-в)
Ваше имя (никнейм)*
Email*
Комментарий*