ГалинаРайгородская
?>

Найдите область определения функции у=

Алгебра

Ответы

vipppp19743355

Область определения (обозначается D(y)) функции находится следующим образом. Необходимо проанализировать функцию на наличие корней, знаменателей и логарифмов. Последний случай нас мало интересует, потому сразу перейдем к двум первым.

А именно: в знаменателе не должен быть ноль, а число под корнем не должно быть отрицательным.

\left \{ {{x+4\neq0 } \atop {x-\frac{x-4}{x+4} \geq0}} \right.

На самом деле, первую строчку можно опустить, далее поймете почему).

Решая вторую строчку получаем:

\frac{x^{2}+3x-4} {x+4} \geq 0

Из этого следует, что x1≠-4, x2=-4, x3=1 (2 и 3 корни получились путем решения квадратного уравнения в числителе).

Далее методом интервалов находим промежутки, удовлетворяющие условию ≥0. Таким промежутком является [1;∞).

ответ: D(y)=[1;∞)

Истомин441
НОК:
1)  представить каждое число как произведение его простых множителей, (например:504 = 2 · 2 · 2 · 3 · 3 · 7) 
2)  записать степени всех простых множителей (504 = 2 · 2 · 2 · 3 · 3 · 7 = 2^3 · 3^2 · 7^1)
3)  выписать все простые делители (множители) каждого из этих чисел;       
4)  выбрать наибольшую степень каждого из них, встретившуюся во всех разложениях этих чисел;
5)  перемножить эти степени.

НОД:
1)  представить каждое число как произведение его простых множителей, (например:360 = 2 · 2 · 2 · 3 · 3 · 5)
2)  записать степени всех простых множителей (360 = 2 · 2 · 2 · 3 · 3 · 5 = 2^3 · 3^2 · 5^1)
3)  выписать все общие делители (множители) этих чисел;
4)  выбрать наименьшую степень каждого из них, встретившуюся во всех произведениях;
5)  перемножить эти степени.

Например:
fruktovahere
tg^3 x+ctg^3 x+tg^2 x+ctg^2 x =0
tg^3 x+ \frac{1}{tg^3x} +tg^2 x+ \frac{1}{tg^2x} =0
Замена: tg^2x=t \neq 0
t^3+ \frac{1}{t^3} +t^2+ \frac{1}{t^2} =0,t \neq 0
\frac{t^6+t^5+t+1}{t^3} =0,t \neq 0
t^6+t^5+t+1=0,t \neq 0

Если целые корни есть, то это либо 1 либо -1 (теорема Безу и все что с ней связано)
\frac{t^6+t^5+t+1}{t-1} =t^5+1
\frac{t^5+1}{t+1} =t^4-t^3+t^2-t+1
Смотреть деление в столбик

(t+1)^2(t^4-t^3+t^2-t+1)=0,t \neq 0

Рассмотрим отдельно уравнение t^4-t^3+t^2-t+1=0
Оно возвратное! делим его на t^2, t=0 - не его корень
t^2+ \frac{1}{t^2}-(t+ \frac{1}{t} )+1=0
t^2+2*t* \frac{1}{t}+ \frac{1}{t^2}-2-(t+ \frac{1}{t} )+1=0

(t+ \frac{1}{t})^2-(t+ \frac{1}{t} )-1=0
Откуда t+ \frac{1}{t}= \frac{1\pm \sqrt{5} }{2}
откуда выходит два квадратных уравнение, и каждое из них не имеет действительных корней

tg(x)=-1, и sin(x) != 0, и cos(x) != 0

x = -Pi/4 + Pi*n, где n - множество действительных чисел (запрет для синуса и косинуса быть нулем не влияет на это множество)

ответ: -Pi/4 + Pi*n, где n - множество действительных чисел 
Решить тригонометрическое уравнение tg^3 x+ctg^3 x+tg^2 x+ctg^2 x =0

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найдите область определения функции у=
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Тимур Андраниковна634
Sergei_Olga658
Владимирович_Намик59
225 - x^2 = 300 - (15 - x)^2 решение с действиями,
Xeniya91
alexandrxzx09
antoska391
dkvsadovoe
luksorsps20096124
bhg50
Svetlana395
КузменковаЖигулин
thebest59
Выражение
okasnab
Asira926
nmakarchuk