1)2x+(3+4x)=2х+3+4х=6х+3 2) 2х-(3+4х)=2х-3-4х=-3-2х 3)2х-(3-4х)=2х-3+4х=6х-3 4)3m+(1+2m)=5m+1 5)3m-(1+2m)=m-1 6)3m-(1-2m)=5m-1 Раскрыть скобки: 1)2x+(1+2y)=2x+2y+1 2)a+(3-3b)=a+3-3b 3)2x-(1+2y)=2x-1-2y 4)a-(3-3b)=a-3+3b 5)b+(c-a+2d)=b+c-a+2d Применяя законы и свойства арифметических действий, упростить выражение: 1)3a+3(1+a)=6a+3 2)2(m-1)+2m=4m-2 3)5(m+3n)+2(2m-n)=5m+15n+4m-2n=9m+13n 4)3(x+2y)+4(2x-y)=3x+6y+8x-4y=11x+2y 5)7(2x+3y)-(3x+2y)=14x+21y-3x-2y=11x+19y 6)5(6c+3d)-2(3c+6d)=30c+15d-6c-12d=24c+3d 7)2(5c+4d)-2(4c+5d)=10c+8d-8c-10d=2c-2d Упростить и найти числовое значение выражения: 1) 4-5.1х-9=-5.1х-5, если х=10, то -51-5=-56 2)5-0.21х-28=-0.21х-23, если х=100, то -21-23=-44 3)2а+0.6а-0.75=2.6а-0.75, если а=5, то 13-0.75=12.25 3)6а+0.3а-0.6=6.3а-0.6, если а=30, то 189-0.6=188.4
Tatyana Anton1475
20.05.2021
4x³+1/x³+2=((2x³)²+2x³+1)/x³. Если обозначить t=2x³, то количество подобных слагаемых в исходном выражении равно количеству слагаемых в многочлене 4032 степени (t²+t+1)²⁰¹⁶. Рассмотрим процесс раскрытия скобок в этом произведении. Возьмем произвольное слагаемое t^k, где k≤4032. Покажем, что коэффициент при нем не 0. Если k=2m, то m≤2016, и значит это слагаемое можно получить, перемножая t² из m скобок (t²+t+1), а из остальных скобок взяв 1. Если k=2m+1, то m≤2015 и значит t^k можно получить, взяв t² из m скобок, взяв t из одной скобки, а из остальных скобок взяв 1. Т.к. все получающиеся коэффициенты положительны, то при каждом слагаемом t^k будет ненулевой коэффициент, а значит общее количество слагаемых равно степени многочлена плюс 1, т.е. ответ 4033.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Преобразуйте произведение многочлена и одночлена в многочлен стандартного вида, 1)3a(a^2+3a-2 2)0, 4x(3-5x+10x^2). 3)5x(2-3x)+3(5x^2-x)-7(x-1).
Решение на фото..........