1) 1-3x=2sin(x)cos(x)
единицу представим по тригонометрическому тождеству:1=sin²x+cos²x
sin²x+cos²x-3cos²x-2sin(x)cos(x)=0
sin²x-2sin(x)cos(x)-2cos²x=0
делим каждый член уравнения на cos²x
tg²x-2tgx-2=0
решаем квадратное уравнение
D=12
tgx₁=1+√3 tgx₂=1-√3
x₁=arctg(1+√3)+ x₂=arctg(1-√3)+
2) 3Sin²x+2SinxCosx=2
3Sin²x+2SinxCosx=2(Sin²x+Cos²x)
Sin²x+2SinxCosx-2Cos²x=0
Уравнение однородное 2 степени. Разделим его на Cos²x
Tg²x+2Tgx-2=0
Tgx=y
y²+2y-2=0
D=12>0
y=(-2+2√3)/2=-1+√3 или y=(-2-2√3)/2= -1-√3
Tgx=-1+√3⇒ x=arctg(-1+√3)+πn,n∈Z
Tgx= -1-√3 ⇒x= arctg(-1-√3)+πn,n∈Z
ответ: 1 бригада -- 9 часов, 2 бригада -- 6 часов.
Объяснение:
"Две бригады, работая вместе, могут выполнить некоторое задание за 3 ч 36 мин.
Сколько времени потратит на выполнение этой задачи каждая бригада, работая отдельно, если известно, что
первой бригаде нужно для этого на 3 часа больше времени, чем второй."
***
Решение.
1 бригада тратит на 3 часа больше второй --- х+3 часов.
производительность равна 1/(х+3);
2 бригада тратит - х часов.
Производительность равна 1/х.
Совместная производительность 1/3,6.
1/(х+3) + 1/х = 1/3,6;
После преобразования, получаем:
3,6х+3,6х+10,8=х²+3х;
х² - 4,2х - 10,8=0;
По теореме Виета:
х1+х2=4,2; х1*х2=-10,8;
х1= 6; х2= - 1,8; - не соответствует условию задачи.
х1=6 часов -- тратит на работу 2 бригада.
6+3=9 часов --- тратит 1 бригада.
Проверим:
1/6 + 1/9 = (3+2)/18 = 5/18 - совместная производительность
1 : 5/18 = 18/5 = 3 3/5 = 3,6 часов. Всё верно!
Поделитесь своими знаниями, ответьте на вопрос:
Просто. найти интеграл: 1) ∫dx/cos^2x 2) ∫(2x^2+1)dx = ∫2x^2dx+∫dx
2). =(2x^3)/3+x+C