Станиславович1830
?>

Найдите наибольшее значение выражения 4*(tg^2a+sin^2a+cos^2a)*cos^4a

Алгебра

Ответы

sotrudnik3

ответ: 4

Пошаговое решение:

1) Упростим выражение.

4(\tan^{2}a+\sin^{2}a+\cos^{2}a)\cos^{4}a=4(1+\tan^{2}a)\cos^{4}a=4\frac{\cos^{4}a}{\cos^{2}a}=4\cos^{2}a

2) Так как не дано никаких ограничений по значению переменной a, то можно сказать, что наибольшего значения это выражение достигает при наибольшем косинусе, а наибольший возможный косинус равен 1. Такое возможно, если a=2\pi n, n \in \mathbb{Z}. Таким образом, наибольшее значение данного выражения равно 4*1^2=4*1=4.

galichka12
1) При x≤-1 |1-x|=1-x, |x+1|=-x-1, y=1-x-x-1=-2x.
На отрезке [-2;-1] y принимает значения от y=-2*-2=4 до y=-2*-1=2.
Среди них целыми являются y=2; 3; 4.
2) При -1<x<1 |1-x|=1-x, |x+1|=x+1, y=1-x+x+1=2.
На интервале (-1;1) y принимает одно значение - y=2.
3) При x≥1 |1-x|=x-1, |x+1|=x+1, y=x-1+x+1=2x.
На отрезке [1;3] y принимает значения от y=2*1=2 до y=2*3=6.
Среди них целыми являются y=2; 3; 4; 5; 6.

Итого, целые значения, которые принимает y на отрезке x∈[-2:3] - 2;3;4;5;6.
Их сумма равна (2+6)/2*5=20.
Panfilov_Anna
\sqrt{1-2x+x^2}+\sqrt{x^2+2x+1}=\sqrt{(1-x)^2}+\sqrt{(x+1)^2}=|1-x|+|x+1|
1) При x≤-1 |1-x|=1-x, |x+1|=-x-1, y=1-x-x-1=-2x.
На отрезке [-2;-1] y принимает значения от y=-2*-2=4 до y=-2*-1=2.
Среди них целыми являются y=2; 3; 4.
2) При -1<x<1 |1-x|=1-x, |x+1|=x+1, y=1-x+x+1=2.
На интервале (-1;1) y принимает одно значение - y=2.
3) При x≥1 |1-x|=x-1, |x+1|=x+1, y=x-1+x+1=2x.
На отрезке [1;3] y принимает значения от y=2*1=2 до y=2*3=6.
Среди них целыми являются y=2; 3; 4; 5; 6.

Итого, целые значения, которые принимает y на отрезке x∈[-2:3] - 2;3;4;5;6.
Их сумма равна (2+6)/2*5=20.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найдите наибольшее значение выражения 4*(tg^2a+sin^2a+cos^2a)*cos^4a
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

chuev4444
tanya14757702
alexst123012225
kotikdmytriy11
Romanovna-yana
tanyamurashova11352
annatarabaeva863
Irina_Chernyaev532
Bella
Zashchitin Denis
Klyucharyova
selena77
viktoritut
ev89036973460
bhg50