Объяснение:
1.
a) 4x³+x+2+6x³-2x²-1=10x³-2x²+x+1.
b) 4x³+x+2-(6x³-2x²-1)==4x³+x+2-6x³+2x²+1=-2x³+2x²+x+3.
2.
a) 3x⁵*(1-x²)=⁵-3x⁷.
b) (a+5)(a-3)=a²-3a+5a-15=a²+2a-15.
3.
((x+15)/3)-((7x+4)/8)=4 |×24
8*(x+15)-3*(7x+4)=4*24
8x+120-21x-12=96
-13x+108=96
13x=12 |÷13
x=12/13.
4.
(a-3)(a+4)-(a+5)(a+1)=a²+a-12-(a²+6a+5)=a²+a-12-a²-6a-5=
=-5a-17=-5*(-1/3)-17=-(-5/3)-17=1²/₃-17=-15¹/₃.
5.
Пусть первое число - х.
1. Второе число - х+1.
2.Третье число х+2. ⇒
(x+1)(x+2)-x²=17
x²+x+2x+2-x²=17
3x²=17-2
3x=15 |÷3
x=5.
ответ: 5; 6; 7.
Представьте в виде меогочлена:
1. (х-3)(х^2+2х-6) = х(х^2+2х-6)-3(х^2+2х-6) = х^3+2х^2-6х-3х^2-6х+18 = х^3-х^2-12х+18
2. (у+5)(у^2-3у+8) = у(у^2-3у+8)+5(у^2-3у+8) = у^3-3у^2+8у+5у^2-15у+40 = у^3+2у^2-7у+40
3. (b-2)(b^2-3b-8) = (b-2)(3b^3-18) = 3b^4-18b-6b^3+36 = 3b^4-6b^3-18b+36
4. (а+4)(a^2-6a+2) = a(a^2-6a+2)+4(a^2-6s+2) = a^3-6a^2+2a+4a^2-24a+8 = a^3-2a^2!22a+8
5. (6p-q)(3p+5q) = 6p(3p+5q)-q(3p+5q) = 18p^2+30pq-3pq-5q^2 = 18p^2+27pq-5q^2
Докажите тождество:
1. a(a-2)-8=(a+2)(a-4)
a^2-2a-8=a^2-4a+2a-8
-2a=-4a+2a
-2a=-2a
ответ: утверждение верно.
2. b(b-3)-18=(b+3)(b-6)
b^2-3b-18=b^2-6b+3b-18
-3b=-6b+3b
-3b=-3b
ответ: утверждение верно.
Поделитесь своими знаниями, ответьте на вопрос:
Решите уровнения 2х+245+576+424+755=1243+1542+757+458+15+х
2x+2000=4015+x
2x-x=4015-2000
x=2015