pafanasiew
?>

Найдите координат центра круга и r. 1)(x-1)^2+(y-2)^=9 2)(x-2)^2+y^2=14

Алгебра

Ответы

kamimoza
(х-х0)²+(у-у0)²=R²
где (х0;у0) - координаты центра,
R² - радиус окружности.

1) (х-1)²+(у-2)²=9
т. (1;2) - центр окружности
r=3
2) (х-2)²+у²=14
т. (2;0) - центр окружности, r=√14
Kochetova92

[x]² - x*[x] + 3 ≤ 0

наименьшее положительное решение найти

x > 0

заметим что любое положительное целое значение х не решение, так как [x]² - x*[x] = 0 и 3 > 0

Немного пугает квадрат первого члена и хочется решить квадратное уравнение, но это не так. Так как [x] и [x]² это целые числа, а не переменные и у нас линейная зависимоть

[x] <= x

x = [x] + {x} целая и дробная части

0 ≤ {x} < 1

теперь будем оценивать неравенство

[x]² - x*[x] + 3 ≤ 0

[x]² + 3 ≤  x*[x]

([x]² + 3)/[x] ≤  x

имеем право [x] = 0 когда 0≤ x < 1  тогда  [x]² - x*[x] = 0 и 3 > 0 не корень

[x] + 3/[x] ≤ x

x - [x] ≥ 3/[x]

{x} ≥ 3/[x]

0 ≤ {x} < 1 значит 3/[x] < 1   [x} ≥ 4 но минимум [х] = 4 то есть 4 < x < 5

{x} ≥ 3/4

{x} = 3/4 минимум

x = [x] + {x} = 4 + 3/4 = 4 3/4 = 4.75

проверяем

[4.75]² - 4.75*[4,75] + 3 = 16 - 19 + 3 = 0 ≤ 0 да

для надежности проверим два ближайших числа 4,74 и 4.76

[4.74]² - 4.74*[4,74] + 3 = 16 - 18.96 + 3 = 0.04 > 0

[4.76]² - 4.76*[4,76] + 3 = 16 - 19.04 + 3 = -0.04 < 0

ответ 4.75

ragimovelshad

Найдем точки экстремума данной функции и узнаем значения этой функции в точках экстремума, в случае, если они принадлежат отрезку [-2;1], а также на границах этого отрезка.

Для того, чтобы найти точки экстремума данной функции, найдем производную этой функции, а затем найдем те значения х, при которых производная обращается в 0. Это и будут возможные точки экстремума.

Находим производную функции f(x) = x^4 - 2x^2.

f'(x) = 4x^3 - 2*2*x = 4x^3 - 4x.

Найдем значения х, при которых производная равна 0:

4x^3 - 4x = 0;

x^3 - x = 0;

x*(x^2 - 1) = 0;

x*(x - 1)(x + 1) = 0;

Производная обращается в ноль в точках х = -1, х = 0 и х = 1.

Точки х = -1 и х = 0 лежат внутри отрезка [-2;1], а точка х = 1 является правой границей данного отрезка. Вычислим значения функции в точках х = -2, х = -1, х = 0 и х = 1.

f(-2) = (-2)^4 - 2*(-2)^2 = 16 - 8 = 8;

f(-1) = (-1)^4 - 2*(-1)^2 = 1 - 2 = -1;

f(0) = 0^4 - 2*0^2 = 0;

f(1) = 1^4 - 2*1^2 = 1 - 2 = -1.

Таким образом, f(x) = x^4 - 2x^2 на отрезке [-2;1] наименьшее значение принимает в точках х = -1 и х = 1 и это наименьшее значение равно -1, а наибольшее значение данная функция принимает в точке х = -2 и это наибольшее значение равно 8.


Найдите наименьшее и наибольшее значение функции f(x)=-2x/x^2+4
Найдите наименьшее и наибольшее значение функции f(x)=-2x/x^2+4

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найдите координат центра круга и r. 1)(x-1)^2+(y-2)^=9 2)(x-2)^2+y^2=14
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

satinvova
bogdanovaoksa
tvmigunova551
znaberd786
vedaikin
o-pavlova-8635
Salko17
Константин
IInessa44478
Tarakanova_pavel
restkof
ГалинаРайгородская
filimon211
devochkadafka624
enot1975