площадь прямоугольного треугольника равна половине произведения его катетов, поэтому нам надо найти катеты треугольника. если известен периметр 30 см и гипотенуза. то сумма двух катетов равна 30 - 13 = 17 (см).
пусть один катет равен х см, тогда второй катет равен (17 - х) см. по теореме пифагора составим уравнение и решим его.
13^2 = x^2 + (17 - x)^2 - раскроем скобку по формуле квадрата разности двух выражений;
169 = x^2 + 289 - 34x + x^2;
2x^2 - 34x + 120 = 0 - поделим почленно на 2;
x^2 - 17x + 60 = 0;
d = b^2 - 4ac;
d = (- 17)^2 - 4 * 1 * 60 = 289 - 240 = 49; √d = 7;
x = (- b ± √d)/(2a)
x1 = (17 + 7)/2 = 24/2 = 12 (см) - длина первого катета, 17 - 12 = 5 (см) - длина второго катета;
x2 = (17 - 7)/2 = 10/2 = 5 (см) - длина первого катета, 17 - 5 = 12 (см) - длина второго катета.
s = 1/2 * 12 * 5 = 6 * 5 = 30 (см^2).
ответ. 30 см^2.
алгебраический
х – скорость течения реки
6х - собственная скорость крокодила
6х + х = 7х - скорость крокодила по течению реки
6х - х = 5х - скорость крокодила против течения реки
7х + 5х = 12х – скорость сближения на расстоянии 924 км
924 : 7 = 132 км/ч - скорость сближения на расстоянии 924 км
Уравнение
12х = 132
х = 132 : 12
х = 11 км/ч - скорость течения реки
5х + х = 6х - скорость сближения на расстоянии 308 км
11 * 6 = 66 км/ч - скорость сближения на расстоянии 308 км
308 : 66 = 14/3 = 4целых 2/3 = 4 ч 40 минПоделитесь своими знаниями, ответьте на вопрос:
1.110. сравните числа: 1) 0, 2 /200 и 103; 2) 0, 5108 и 9/3; 3) 2, 563 и 4, 5/28.
1) 0,2√200<10√3
2)0,5√108 < 9√3
3) 2,5√63 < 4,5√28
Объяснение:
1) 0,2√200=√0.04*200=√8
10√3=√3*100=√300
2) 0,5√108=√108*0,25=√27
9√3=√3*81=√243
3) 2,5√63 =√63*6,25=√393,75
4,5√28=√28*20,25=√567