Объяснение:
1) Общий член арифметической прогрессии an = a1 + d (n - 1).
a1 = - 14;
a2 = -11 = - 14 + d;
d = 3;
a23 = - 14 + 3 * 22 = 52.
Найдём сумму первых 23 членов этой арифметической прогрессии:
S23 = 23 (a1 + a23) / 2 = 23 * 19 = 437.
2) Найдём одиннадцатый член этой арифметической прогрессии:
a1 = 17,2;
a11 = 17,2 - 0,2 * 10 = 15,2;
Сумма одиннадцати членов равна:
S11 = 11 * (17,2 + 15,2)/2 = 178,2.
3) Найдём двадцать второй член этой арифметической прогрессии:
a1 = 6;
a10 = 12,3 = 6 +9 d;
d = 0,7;
a20 = 6 + 0,7 * 19 = 19,3.
Найдём сумму 22 членов этой арифметической прогрессии:
S22 = 22 * (6 + 19,3)/2 = 278,3.
Поделитесь своими знаниями, ответьте на вопрос:
1) расположите в порядке возрастания числа: а – 3; a + 8; а – ; а – с2 – 11; за + 25, 7/3. можно, с объяснением
ответ: Одночленом - называется произведение чисел, переменных и их натуральных степеней.
Каждое из чисел 1, 7, 1 002, 0, −1, −7, 0,8, 1/4, - это одночлен. Любая переменная, к примеру, a, b, p, q, t, x, y, z – это тоже одночлены по определению. Одночленами являются и степени чисел и переменных, например, 23, (−3,41)7, x2 и t115. Но наиболее яркими представителями одночленов являются произведения чисел, переменных и их степеней: 5·x, 7·(−3)·x·y3·6, x·x·y3·x·y2·z и т.п. Из приведенных примеров видно, что в составе одночлена может быть как одно, так и несколько чисел, как одна, так и несколько переменных и их степеней, причем они могут повторяться.
Многочленом называется сумма одночленов.
Одночлены, входящие в состав многочлена, называют его членами.
Членами многочлена 4xy – 3ab являются 4xy и – 3ab .
Если многочлен состоит из двух членов, то его называют двучленом:
5xy – 7ab ; y+5b; 7a+13a.
Если из трех – трехчленом:
5x y – 7a +5 ; y+5b– 3x ; 7a+13a+5ab .
Одночлен считают многочленом, состоящим из одного члена:
2x ; 3 ; 0 ; 7xy.