lika080489
?>

Сколько пятизначных чисел можно составить из цифр 1, 2, 3, 4, 5, если нечетные и четные цифры в числе чередуются и не повторяются?

Алгебра

Ответы

vkorz594

ответ:1,2,3,4,5

1,2,5,4,3

3,2,1,4,5

3,2,5,4,1

5,2,1,4,3

5,2,3,4,1

1,4,3,2,5

1,4,5,2,3

3,4,1,2,5

3,4,5,2,1

5,4,1,2,3

5,4,3,2,1

Объяснение:

на первом месте может быть любая из 3 нечетных,на втором любая из 2 четных на третьем любая из двух оставшихся нечетных и на четвертом последняя четная и на пятом последняя нечетная. значит 3*2*2*1*1=12

1,2,3,4,5

1,2,5,4,3

3,2,1,4,5

3,2,5,4,1

5,2,1,4,3

5,2,3,4,1

1,4,3,2,5

1,4,5,2,3

3,4,1,2,5

3,4,5,2,1

5,4,1,2,3

5,4,3,2,1

adman7

Воспользуемся методом введения вс угла:

1) √2sinx + √6cosx = ...

√(2 + 6) = √8 = 2√2

... = √8(sinx·cos(arccos(1/2) + cosx·sin(arccos(1/2)) = √8sin(x + π/3)

-1 ≤ sin(x + π/3) ≤ 1

-√8 ≤ √8sin(x + π/3) ≤ √8 ⇒ max = √8;

2) 3sinx + 4cosx = 5(sinx·cos(arccos(3/5) + cos·sin(arccos(3/5)) = 5sinx(x + arccos(3/5))

-1 ≤ sinx(x + arccos(3/5))  ≤ 1

-5 ≤ 5sinx(x + arccos(3/5)) ≤ 5 ⇒ max = 5

3) 2siny - 5cosy = √29(siny·cos(arccos(2/√29) + cosy·sin(arccos(5/√29)

max = √29


P.s.: нужно воспользоваться тем, что синус принимает значения на отрезке [-1; 1], а также, что выражение вида Asinx + Bcosy можно привести к виду:

Asinx + Bcosx = \sqrt{A^2 + B^2} sin(x + arccos\dfrac{A}{\sqrt{A^2 + B^2} } )

secretary
Найти площадь фигуры, ограниченной кривыми.

Для решения задачи в первую очередь нужно построить график.

По графику видно, что найти нужно площадь области, лежащей над \bf y = e^{-x} и под \bf y = e^x.

Найдём точку пересечения данных кривых. Для этого нужно решить систему из уравнений их функций.

\begin{cases}y = e^x,\\y = e^{-x};\end{cases}\Longrightarrow\; e^x = e^{-x}\Longrightarrow\; \bf x = 0.

По графику прямая \bf x = 0 будет являться границей фигурой слева, а прямая \bf x = 1 — справа.

Найти площадь фигуры, ограниченной сверху графиком функции \bf y = e^{x}, а снизу функцией \bf y = e^{-x}, а так же прямыми \bf x = 0 и \bf x = 1, значит вычислить следующий определённый интеграл.

\int\limits_0^1{\left(e^x - e^{-x}\right)}dx = \int\limits_0^1{e^xdx - \int\limits_0^1e^{-x}}dx = e^x|_0^1 - \left(-e^{-x}\right)|_0^1 = e - 1 - \left(-\dfrac{1}{e} - (-1)\right) =\\= e - 1 - \left(-\dfrac{1}{e} + 1\right) = e - 1 + \dfrac{1}{e} - 1 = e + \dfrac{1}{e} - 2 \approx 1,086.

ответ: \bf e + \dfrac{1}{e} - 2 \approx 1,086.
Вычислить площадь фигуры, ограниченной кривымиy=e^x,y=e^-x,x=1

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Сколько пятизначных чисел можно составить из цифр 1, 2, 3, 4, 5, если нечетные и четные цифры в числе чередуются и не повторяются?
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

evgeniishulov4696
Жукова_Петрович1281
kostmax1971
vodexshop2
juli19657
akarabut343
sbn07373
Georgievna1407
s45983765471717
Кожуховский398
platonovkosty
ska67mto3983
nataliagoncharenko
leonid-adv70
nyuraborova89