Пусть х кг во втором мешке, тогда в первом 4х кг .Из первого взяли 4х-10кг,а во второй досыпали х+5.Составим уравнение:
4х-10=х+5
3х=15
х=5
Значит во втором мешке 5 кг
В первом мешке 4*5=20кг
ответ:5кг,20кг
Дана функция у = 2х² - х⁴.
1.Область определения функции: x ∈ R, или -∞ < x < ∞.
2. Нули функции. Точки пересечения графика функции с осью ОХ.
2х² - х⁴ = 0, х²(2 - х²) = 0. Тогда х² = 0 и (или) 2 - х² = 0.
x₁ = 0.
x₂ = √2.
х₃ = -√2.
Точки пересечения графика функции с осью ОУ при х = 0 ⇒ у = 0.
3. Промежутки знакопостоянства функции.
Для нахождения промежутков знакопостоянства функции y=f(x) надо решить неравенства f(x)>0, f(x)<0.
По пункту 2 имеем 4 промежутка значений аргумента, в которых функция сохраняет знак:
(−∞;−√2), (−√2;0), (0;√2), (√2;+∞).4. Симметрия графика (чётность или нечётность функции).
Проверим функци чётна или нечётна с соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
- x^{4} + 2 x^{2} = - x^{4} + 2 x^{2}
- Да
- x^{4} + 2 x^{2} = - -1 x^{4} - 2 x^{2}
- Нет
Значит, функция является чётной.
5. Периодичность графика - нет.
6.Точки разрыва, поведение функции в окрестностях точек разрыва, вертикальные асимптоты - нет.
7. Интервалы монотонности функции, точки экстремумов, значения функции в точках экстремумов.
Находим производную заданной функции:
y' = 4x - 4x³.
Приравниваем производную нулю: 4x - 4x³ = 4x(1 - x²) = 0,
4x = 0, x = 0.
x² = 1, х = 1, x = -1.
Критических точек три: х = 0, х = 1, x = -1.
Находим значения производной левее и правее от критических.
x = -2 -1 -0.5 0 0.5 1 2
y' = 24 0 -1.5 0 1.5 0 -24.
Где производная положительна - функция возрастает, где отрицательна - там убывает.
Убывает на промежутках (-oo, -1] U [0, oo).
Возрастает на промежутках (-oo, 0] U [1, oo).
8. Интервалы выпуклости, точки перегиба.
Найдем точки перегибов, для этого надо решить уравнение
\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0.
Вторая производная 4 \left(- 3 x^{2} + 1\right) = 0.
Решаем это уравнение.
Корни этого уравнения:
x_{1} = - \frac{\sqrt{3}}{3}
x_{2} = \frac{\sqrt{3}}{3}
Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках [-sqrt(3)/3, sqrt(3)/3].
Выпуклая на промежутках (-oo, -sqrt(3)/3] U [sqrt(3)/3, oo).
9. Поведение функции в бесконечности. Наклонные (в частности, горизонтальные) асимптоты - нет.
10. Дополнительные точки, позволяющие более точно построить график.
11. Построение графика функции - дан в приложении.Итак, есть формула в данной задаче
v - скорость выполнения работы
А - сам объем работы
t - время выполнения работы
Составим выражения для времени секретаря и
, 0,2А - так делал 20% от общего объема работы
, 0,8А потому что секретарь делал 80% работы
Так же известно, что
Вот и подставим туда полученные выше выражения
Получили вот такое соотношение скоростей
Далее, раз время должно быть одинаковым, найдем отношение объема работ одного сотрудника к другому
В целом, ничего удивительного: медленнее работаешь, за одинаковое время меньше успеешь.
Весь объем работы равен А или 100%.
То есть у секретаря 40%, а у работы.
А изначально у было 20% работы. Значит, надо увеличить работу в 3 раза.
ответ: в 3 раза
Поделитесь своими знаниями, ответьте на вопрос:
Решить 1.решите в одном мешке было в 4 раза больше сахара, чем в другом. когда из первого мешка взяли 10 кг сахара, а во второй досыпали 5 кг, то в мешках сахар стало поровну.сколько килограммов сахара было в каждом мешке сначала?
20 кг, 5 кг.
Объяснение:
Первый мешок 4х кг сахара, второй мешок х кг сахара. Составим уравнение:
4х-10=х+5
4х-х=5+10
3х=15
х=5
Во втором мешке было 5 кг, в первом 5*4=20 кг.